Abstract

In this work, we study the bistability of an active nonlinear microring resonator and design a flip–flop based on the active microring resonator. In the presence of nonlinear and linear loss, we use Er-doped gain medium in the microring to obtain gain to compensate for the loss of the resonator. Both analytical and numerical methods are used to solve the propagation in the microring with double couplers, and we obtain the hysteresis loops of the microring. The results obtained by the two methods reveal that, in the presence of nonlinearity in microring resonators, the system exhibits bistability, and the gain in the microring leads to a decrease of the bias power when the active microring is taken as a bistable switcher. Basing on the bistability of the microring, we realize a set–reset flip–flop by adding a positive or negative feedback onto the bias. We also find that the duration of the set and reset pulses must exceed the field buildup time of the microring if we want to achieve the switching of the bias signal. In our design, the duration time is about 2 ps.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
    [CrossRef]
  2. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
    [CrossRef]
  3. Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
    [CrossRef]
  4. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
    [CrossRef]
  5. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [CrossRef]
  6. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical delay lines,” J. Opt. Soc. Am. B 21, 1665–1673 (2004).
    [CrossRef]
  7. Z. Xia and Z. Zhou, “Sensitivity analysis of microring resonator based biosensor: the quality factor perspective,” in Optics Valley of China International Symposium on Optoelectronics (IEEE, 2006), pp. 44–46.
  8. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier depletion Mach–Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
    [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef]
  10. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. Luo, A. K.-Y. Jen, H. R. Fetterman, and W. H. Steier, “Ring resonator-based electro-optic polymer traveling-wave modulator,” J. Lightwave Technol. 24, 3514–3519 (2006).
    [CrossRef]
  11. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
    [CrossRef]
  12. H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.
  13. M. Först, J. Niehusmann, T. Plötzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett. 32, 2046–2048 (2007).
    [CrossRef]
  14. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).
  15. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
    [CrossRef]
  16. Y. M. Landobasa and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two ring system,” Opt. Express 16, 1796–1807 (2008).
    [CrossRef]
  17. A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.
  18. S. Tofighi, S. S. Farshemi, B. Sajjad, F. Shahshahani, and A. R. Bahrampour, “Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber,” Appl. Opt. 51, 7016–7024 (2012).
    [CrossRef]
  19. H. Seidel, “Bistable optical circuit using saturable absorber within a resonant cavity,” U.S. Patent3610731 (19May1969).
  20. M. Karimi, M. Lafouti, A. A. Amidiyan, and J. Sabbaghzadeh, “All-optical flip–flop based on nonlinear effects in fiber Bragg gratings,” Appl. Opt. 51, 21–26 (2012).
    [CrossRef]
  21. Z. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
    [CrossRef]
  22. Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
    [CrossRef]
  23. Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
    [CrossRef]
  24. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
    [CrossRef]
  25. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
    [CrossRef]
  26. A. D. McAulay, “All-optical switching and logic with an integrated optic microring resonator,” Proc. SPIE 5814, 16–22 (2005).
    [CrossRef]
  27. R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
    [CrossRef]
  28. A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
    [CrossRef]
  29. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
    [CrossRef]
  30. L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
    [CrossRef]

2012 (6)

2009 (1)

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

2008 (2)

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Y. M. Landobasa and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two ring system,” Opt. Express 16, 1796–1807 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (3)

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

A. D. McAulay, “All-optical switching and logic with an integrated optic microring resonator,” Proc. SPIE 5814, 16–22 (2005).
[CrossRef]

2004 (2)

2003 (1)

2002 (4)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20, 1968–1975 (2002).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

2001 (2)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

1984 (1)

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Almeida, V. R.

Amidiyan, A. A.

Arakawa, T.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Bahrampour, A. R.

S. Tofighi, S. S. Farshemi, B. Sajjad, F. Shahshahani, and A. R. Bahrampour, “Optical bistability in fiber ring resonator containing an erbium doped fiber amplifier and quantum dot doped fiber saturable absorber,” Appl. Opt. 51, 7016–7024 (2012).
[CrossRef]

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

Bahrampour, R.

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Bolten, J.

Bunyatnoparat, P.

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

Calabretta, N.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Chen, H.

Chin, M. K.

Dalton, L. R.

de Waardt, H.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

de Waurdt, H.

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Ding, J.

Dorren, H. J. S.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Dunayevskiy, I.

Dupuis, R. D.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Farman, F.

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

Farshemi, S. S.

Fetterman, H. R.

Först, M.

Gibbs, H. M.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Hall, D. C.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Heller, R. D.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Hill, M. T.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Huijskens, F. M.

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Jen, A. K.-Y.

Jewell, J. L.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

Ji, R.

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Kaneshige, H.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Karimi, M.

M. Karimi, M. Lafouti, A. A. Amidiyan, and J. Sabbaghzadeh, “All-optical flip–flop based on nonlinear effects in fiber Bragg gratings,” Appl. Opt. 51, 21–26 (2012).
[CrossRef]

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Keyvaninia, S.

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Khoe, G. D.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Khurgin, J. B.

Kokubun, Y.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Kolbas, R. M.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Kou, L.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Kuo, Y. H.

Kurz, H.

Lafouti, M.

Landobasa, Y. M.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[CrossRef]

Liu, Y.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Lu, Y.

Luo, J.

McAulay, A. D.

A. D. McAulay, “All-optical switching and logic with an integrated optic microring resonator,” Proc. SPIE 5814, 16–22 (2005).
[CrossRef]

McCall, S. L.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Min, R.

Mirzaee, S. M. A.

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

Mitatha, S.

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

Moormann, C.

Nejad, H. R.

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Niehusmann, J.

Panepucci, R. R.

Plötzing, T.

Polar, A.

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

Polman, A.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Poon, J. K. S.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Qamsari, M. J. A.

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

Rabiei, P.

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Rushford, M. C.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

Sabbaghzadeh, J.

Sajjad, B.

Scheuer, J.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Seidel, H.

H. Seidel, “Bistable optical circuit using saturable absorber within a resonant cavity,” U.S. Patent3610731 (19May1969).

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).

Shahshahani, F.

Srivatsa, A.

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, “Optical packet switching and buffering by using all-optical signal processing methods,” J. Lightwave Technol. 21, 2–12 (2003).
[CrossRef]

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

Steier, W. H.

Strohhöfer, C.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Tazawa, H.

Threepak, T.

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

Tian, Y.

Tofighi, S.

Ueyama, Y.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).

Wahlbrink, T.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).

Xia, Z.

Z. Xia and Z. Zhou, “Sensitivity analysis of microring resonator based biosensor: the quality factor perspective,” in Optics Valley of China International Symposium on Optoelectronics (IEEE, 2006), pp. 44–46.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Xu, Y.

Yamada, H.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Yang, L.

Yariv, A.

Yu, M.

Yupapin, P. P.

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

Zakeri, S. S.

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

Zang, Z.

Z. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
[CrossRef]

Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Zhang, C.

Zhang, L.

Zhang, T.

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

Zhang, Y.

Z. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

Zhou, P.

Zhou, Z.

Z. Xia and Z. Zhou, “Sensitivity analysis of microring resonator based biosensor: the quality factor perspective,” in Optics Valley of China International Symposium on Optoelectronics (IEEE, 2006), pp. 44–46.

Zhu, W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use of a single nonlinear Fabry–Perot étalon as optical logic gates,” Appl. Phys. Lett. 44, 172–174 (1984).
[CrossRef]

Electron. Lett. (1)

M. T. Hill, A. Srivatsa, N. Calabretta, Y. Liu, H. de Waurdt, G. D. Khoe, and H. J. S. Dorren, “1×2 optical packet switch using all-optical header processing,” Electron. Lett. 37, 774–775 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip–flop based on coupled laser diodes,” IEEE J. Quantum Electron. 37, 405–413 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Kou, D. C. Hall, C. Strohhöfer, A. Polman, T. Zhang, R. M. Kolbas, R. D. Heller, and R. D. Dupuis, “Er-doped AlGaAs native oxides: photoluminescence characterization and process optimization,” IEEE J. Sel. Top. Quantum Electron. 8, 880–890 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical buffering in all-optical packet switched cross connects,” IEEE Photon. Technol. Lett. 14, 849–851 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

J. Lightwave Technol. (3)

J. Mod. Opt. (1)

Z. Zang and Y. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature 1, 65–71 (2007).

Opt. Commun. (3)

R. Bahrampour, M. Karimi, M. J. A. Qamsari, H. R. Nejad, and S. Keyvaninia, “All-optical set–reset flip–flop based on the passive microring-resonator bistability,” Opt. Commun. 281, 5104–5113 (2008).
[CrossRef]

A. R. Bahrampour, S. M. A. Mirzaee, F. Farman, and S. S. Zakeri, “All-optical flip–flop composed of a single nonlinear passive microring coupled to two straight waveguides,” Opt. Commun. 282, 427–433 (2009).
[CrossRef]

Z. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976).
[CrossRef]

Proc. SPIE (1)

A. D. McAulay, “All-optical switching and logic with an integrated optic microring resonator,” Proc. SPIE 5814, 16–22 (2005).
[CrossRef]

Other (4)

H. Seidel, “Bistable optical circuit using saturable absorber within a resonant cavity,” U.S. Patent3610731 (19May1969).

A. Polar, T. Threepak, S. Mitatha, P. Bunyatnoparat, and P. P. Yupapin, “New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system,” in International Symposium on Communications and Information Technology (IEEE, 2009), pp. 1063–1064.

H. Kaneshige, Y. Ueyama, H. Yamada, T. Arakawa, and Y. Kokubun, “Quantum well Mach–Zehnder modulator with single microring resonator and optimized arm length,” in 17th Micro-optics. Conference (IEEE, 2011), pp. 1–2.

Z. Xia and Z. Zhou, “Sensitivity analysis of microring resonator based biosensor: the quality factor perspective,” in Optics Valley of China International Symposium on Optoelectronics (IEEE, 2006), pp. 44–46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Microring with two couplers.

Fig. 2.
Fig. 2.

Schematic configuration of erbium-doped ring resonator.

Fig. 3.
Fig. 3.

Transmission power and coefficient versus the input power obtained by analytical method in port 1 and port 2 with δL=3, g=0. (a) and (c) show the relation of the transmission to the input power in ports 1 and 2, respectively. (b) and (d) show the relation of the output power to the input power in ports 1 and 2, respectively.

Fig. 4.
Fig. 4.

Transmission power and coefficient versus the input power obtained by analytical method in port 1 and port 2 with δL=3, g=7×103μm1. (a) and (c) show the relation of the transmission to the input power in ports 1 and 2, respectively. (b) and (d) show the relation of the output power to the input power in ports 1 and 2, respectively.

Fig. 5.
Fig. 5.

Transmission power and coefficient versus the input power obtained by numerical method in port 1 and port 2 with δL=3, g=7×103μm1. (a) and (c) show the relation of the transmission to the input power varying from low to high and from high to low in ports 1 and 2, respectively. (b) and (d) show the relation of the output power to the input power varying from low to high and from high to low in ports 1 and 2, respectively.

Fig. 6.
Fig. 6.

Schematic of a nonlinear microring flip–flop based on the Kerr effect.

Fig. 7.
Fig. 7.

Upper transmission coefficient of microring M2.

Fig. 8.
Fig. 8.

Transient behavior of the flip–flop. The upper box shows the output power in port Q, the middle box shows the output power in port Q¯, and the lower box shows the set (S) and reset (R) pulses.

Fig. 9.
Fig. 9.

By adjusting the time intervals between the set and reset, the sequence 0100101110 is obtained in port Q¯, while in port Q the sequence 1011010001 is obtained.

Tables (2)

Tables Icon

Table 1. Optical Parameters of Double Coupler Doped-Erbium Fiber Ring Resonator

Tables Icon

Table 2. Parameters of Microring M2

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Az+n0cAz=α2A+g2Aα2|A|2AiδAiω0c(n0+n2|A|2)A,
A(0,t)=iχ1Ain+κ1A(L,t),
A1o(0,t)=iχ1A(L,t)+κ1Ain,
a(L/2,t)=κ2a(L/2,t),
A2o(0,t)=iχ2a(L/2,t),
Az=α2A+g2Aα2|A|2AiδAiω0c(n0+n2|A|2)A.
dBdz=α2B+g2Bα2B3,
dψdz=δω0c(n0+n2B2).
a(L/2,ω)=A(0,ω)exp[(gα)L/4]exp(iψ1)M1,
A(L,ω)=a(L/2,ω)exp[(gα)L/4]exp(iψ2)M2.
A(0,ω)=iχ1AinM1M2M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)],
a(L/2,ω)=iχ1AinM2exp(αL/4)exp(iψ1)M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)],
A1o(ω)=κ1AinM1M2κ2Ainexp[(gα)L/2]exp[i(ψ1+ψ2)]M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)],
A2o(ω)=χ1χ2AinM2exp[(gα)L/4]exp(iψ1)M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)].
T1=|A1o|2|Ain|2=|κ1M1M2κ2exp[(gα)L/2]exp[i(ψ1+ψ2)]M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)]|2,
T2=|A2o|2|Ain|2=|χ1χ2M2exp[(gα)L/4]exp(iψ1)M1M2κ1κ2exp[(gα)L/2]exp[i(ψ1+ψ2)]|2.

Metrics