Abstract

An off-axis three-mirror system (OTS) was designed based on the primary mirror and tertiary mirror (TM) integrated on a single substrate in order to solve the OTS drawbacks, such as the alignment difficulty and the large opto-mechanical weight. Furthermore, an optical freeform surface that can increase the optimizing degrees of freedom (DOF) was applied on the TM in order to achieve a wide field of view (FOV). An example with a focal length of 1200 mm, F-number of 12, and FOV of 10°×4° was given, and the maximum wave front error (WFE) RMS was 0.0126λ, indicating a good imaging quality. The design result shows that the number of alignment DOF was reduced from 12 to 6, and the weight of the mirror support assembly can also be lighter. An XY polynomial, established as an even function of x, was employed as the TM surface, so we obtained an axial symmetrical imaging quality about the x axis, and the axial symmetry aberration performance also brings considerable convenience to alignment and testing for the OTS.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Korsch, “Design and optimization technique for three-mirror telescopes,” Appl. Opt. 19, 3640–3645 (1980).
    [CrossRef]
  2. T. Nakano and Y. Tamagawa, “Configuration of an off-axis three-mirror system focused on compactness and brightness,” Appl. Opt. 44, 776–783 (2005).
    [CrossRef]
  3. C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).
  4. R. Geyl, “Design and fabrication of a three-mirror, flat-field anastigmat for high-resolution earth observation,” Proc. SPIE 2210, 739–746 (1994).
    [CrossRef]
  5. L. D. Mei, Q. X. Geng, and Z. Li, “Optimization design for main supporting structure of the off-axis TMA Space Remote Sensor,” in International Conference on Mechanic Automation and Control Engineering (IEEE, 2010), pp. 252–254.
  6. M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).
  7. M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.
  8. R. B. Johnson, “Wide field of view three-mirror telescopes having a common optical axis,” Opt. Eng. 27, 121046 (1988).
    [CrossRef]
  9. J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).
  10. D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
    [CrossRef]
  11. Z. Zheng, X. Hao, and X. L. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt. 48, 6627–6634 (2009).
    [CrossRef]
  12. Y. Ding, X. Liu, Z.-R. Zheng, and P.-F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [CrossRef]
  13. W. Zhang, B. Zuo, S. Chen, H. Xiao, and Z. Fan, “Design of fixed correctors used in conformal optical system based on diffractive optical elements,” Appl. Opt. 52, 461–466 (2013).
    [CrossRef]
  14. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48, 2655–2668 (2009).
    [CrossRef]
  15. L. Xu, K. Chen, Q. He, and G. Jin, “Design of freeform mirrors in Czerny-Turner spectrometers to suppress astigmatism,” Appl. Opt. 48, 2871–2879 (2009).
    [CrossRef]
  16. P. Junhua, The Design, Manufacture and Test of the Aspherical Optical Surfaces (SuZhou University, 2004).
  17. V. N. Mahajan, “Optical Imaging and Aberrations: Part 1. Ray Geometrical Optics (SPIE, 1998).
  18. R. K. Tyson, “Conversion of Zernike aberration coefficients to Seidel and higher-order power-series aberration coefficients,” Opt. Lett. 7, 262–264 (1982).
    [CrossRef]

2013

2012

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

2010

M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).

2009

2008

2005

2004

J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).

2003

C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).

1994

R. Geyl, “Design and fabrication of a three-mirror, flat-field anastigmat for high-resolution earth observation,” Proc. SPIE 2210, 739–746 (1994).
[CrossRef]

1988

R. B. Johnson, “Wide field of view three-mirror telescopes having a common optical axis,” Opt. Eng. 27, 121046 (1988).
[CrossRef]

1982

1980

Bezawada, N.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

Born, A.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

Chen, K.

Chen, S.

Cheng, D.

Ding, Y.

Fan, Z.

Geng, Q. X.

L. D. Mei, Q. X. Geng, and Z. Li, “Optimization design for main supporting structure of the off-axis TMA Space Remote Sensor,” in International Conference on Mechanic Automation and Control Engineering (IEEE, 2010), pp. 252–254.

Geyl, R.

R. Geyl, “Design and fabrication of a three-mirror, flat-field anastigmat for high-resolution earth observation,” Proc. SPIE 2210, 739–746 (1994).
[CrossRef]

Gu, P.-F.

Hao, X.

Hartl, M.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Hastings, P.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

He, Q.

Hua, H.

Huiling, J.

C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).

Jin, G.

Johnson, R. B.

R. B. Johnson, “Wide field of view three-mirror telescopes having a common optical axis,” Opt. Eng. 27, 121046 (1988).
[CrossRef]

Jun, C.

C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).

Junhua, P.

P. Junhua, The Design, Manufacture and Test of the Aspherical Optical Surfaces (SuZhou University, 2004).

Korsch, D.

Kührt, E.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Lampton, M. L.

M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).

Lee, D.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

Levi, M. E.

M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).

Li, Z.

L. D. Mei, Q. X. Geng, and Z. Li, “Optimization design for main supporting structure of the off-axis TMA Space Remote Sensor,” in International Conference on Mechanic Automation and Control Engineering (IEEE, 2010), pp. 252–254.

Liu, J.

J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).

Liu, X.

Liu, X. L.

Long, F.

J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).

Mahajan, V. N.

V. N. Mahajan, “Optical Imaging and Aberrations: Part 1. Ray Geometrical Optics (SPIE, 1998).

Mei, L. D.

L. D. Mei, Q. X. Geng, and Z. Li, “Optimization design for main supporting structure of the off-axis TMA Space Remote Sensor,” in International Conference on Mechanic Automation and Control Engineering (IEEE, 2010), pp. 252–254.

Michaelis, H.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Mosebach, H.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Mottola, S.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Nakano, T.

Parr-Burman, P.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

Schindler, K.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Schubert, J.

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

Sholl, M. J.

M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).

Stobie, B.

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

Talha, M. M.

Tamagawa, Y.

Tyson, R. K.

Wang, Y.

Xiao, H.

Xu, L.

Zhang, W.

W. Zhang, B. Zuo, S. Chen, H. Xiao, and Z. Fan, “Design of fixed correctors used in conformal optical system based on diffractive optical elements,” Appl. Opt. 52, 461–466 (2013).
[CrossRef]

J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).

Zheng, Z.

Zheng, Z.-R.

Zhicheng, W.

C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).

Zuo, B.

Acta Optica Sinica

C. Jun, W. Zhicheng, and J. Huiling, “Design on three-reflective-mirror system used in space,” Acta Optica Sinica 23, 216–219 (2003).

Appl. Opt.

Opt. Eng.

R. B. Johnson, “Wide field of view three-mirror telescopes having a common optical axis,” Opt. Eng. 27, 121046 (1988).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Technol.

J. Liu, F. Long, and W. Zhang, “Study on computer-aided alignment method of off-axis three-mirror system,” Opt. Technol. 5, 019 (2004).

Proc. SPIE

D. Lee, A. Born, P. Parr-Burman, P. Hastings, B. Stobie, and N. Bezawada, “Design of a compact wide field telescope for space situational awareness,” Proc. SPIE 8444, 84440F (2012).
[CrossRef]

R. Geyl, “Design and fabrication of a three-mirror, flat-field anastigmat for high-resolution earth observation,” Proc. SPIE 2210, 739–746 (1994).
[CrossRef]

M. L. Lampton, M. J. Sholl, and M. E. Levi, “Off-axis telescopes for dark energy investigations,” Proc. SPIE 7731,77311G (2010).

Other

M. Hartl, H. Mosebach, J. Schubert, H. Michaelis, S. Mottola, E. Kührt, and K. Schindler, “Asteroid finder-the spaceborne telescope to search for NEO asteroids,” in International Conference on Space Optics (ESA, 2010), Vol. 4, p. 8.

L. D. Mei, Q. X. Geng, and Z. Li, “Optimization design for main supporting structure of the off-axis TMA Space Remote Sensor,” in International Conference on Mechanic Automation and Control Engineering (IEEE, 2010), pp. 252–254.

P. Junhua, The Design, Manufacture and Test of the Aspherical Optical Surfaces (SuZhou University, 2004).

V. N. Mahajan, “Optical Imaging and Aberrations: Part 1. Ray Geometrical Optics (SPIE, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Initial configuration of coaxial three mirrors.

Fig. 2.
Fig. 2.

Initial configuration.

Fig. 3.
Fig. 3.

MTF of initial configuration.

Fig. 4.
Fig. 4.

System imaging optical path.

Fig. 5.
Fig. 5.

Effective part of the PM and TM.

Fig. 6.
Fig. 6.

Modulation transfer function (MTF).

Tables (7)

Tables Icon

Table 1. Configuration Parameters

Tables Icon

Table 2. Polynomial Parameters of Freeform TM

Tables Icon

Table 3. WFE (Reference Wave λ = 0.6328 μm )

Tables Icon

Table 4. Distortion Grid Value

Tables Icon

Table 6. Tolerance Value

Tables Icon

Table 7. Performance Summary (Polychromatic RMS Wavefront Aberration)

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

α 1 = l 2 l 1 = h 2 h 1 ,
α 2 = l 3 l 2 = h 3 h 2 ,
β 1 = l 2 l 2 = u 2 u 2 ,
β 2 = l 3 l 3 = u 3 u 3 .
r 1 = 2 β 1 β 2 ,
r 2 = 2 α 1 ( 1 + β 1 ) β 2 ,
r 3 = 2 α 1 α 2 1 + β 2 ,
d 1 = 1 α 1 β 1 β 2 ,
d 2 = α 1 ( 1 α 2 ) β 2 .
S I = 1 4 [ ( k 1 1 ) β 1 3 β 2 3 + k 2 α 1 β 2 3 ( 1 + β 1 ) 3 k 3 α 1 α 2 ( 1 + β 2 ) 3 + α 1 β 2 3 ( 1 + β 1 ) ( 1 β 1 ) 2 α 1 α 2 ( 1 + β 2 ) ( 1 β 2 ) 2 ] ,
S II = k 2 ( α 1 1 ) β 2 3 ( 1 + β 1 ) 3 4 β 1 β 2 k 3 [ α 2 ( α 1 1 ) + β 1 ( 1 α 2 ) ] 4 β 1 β 2 · ( 1 + β 2 ) 3 + ( α 1 1 ) β 2 3 ( 1 + β 1 ) ( 1 β 1 ) 2 4 β 1 β 2 [ α 2 ( α 1 1 ) + β 1 ( 1 α 2 ) ] ( 1 + β 2 ) ( 1 β 2 ) 2 4 β 1 β 2 1 2 ,
S III = k 2 β 2 ( α 1 1 ) 2 ( 1 + β 1 ) 3 4 α 1 β 1 2 k 3 [ α 2 ( α 1 1 ) + β 1 ( 1 α 2 ) ] 2 4 α 1 α 2 β 1 2 β 1 2 · ( 1 + β 2 ) 3 + β 2 ( α 1 1 ) 2 ( 1 + β 1 ) ( 1 β 1 ) 2 4 α 1 β 1 2 1 4 α 1 α 2 β 1 2 β 1 2 · [ α 2 ( α 1 1 ) + β 1 ( 1 α 2 ) ] 2 ( 1 + β 2 ) ( 1 β 2 ) 2 1 α 1 β 1 · β 2 ( α 1 1 ) ( 1 + β 1 ) ( 1 β 1 ) [ α 2 ( α 1 1 ) + β 1 ( 1 α 2 ) ] α 1 α 2 β 1 β 2 · ( 1 + β 2 ) ( 1 β 2 ) β 1 β 2 + β 2 ( 1 + β 1 ) α 1 1 + β 2 α 1 α 2 .
[ S I S II S III ] = [ A 1 ( β 1 , β 2 ) B 1 ( β 1 , β 2 ) C 1 ( α 1 , α 2 , β 2 ) A 2 ( 0 ) B 2 ( α 1 , β 1 , β 2 ) C 2 ( α 1 , α 2 , β 1 , β 2 ) A 3 ( 0 ) B 3 ( α 1 , β 1 , β 2 ) C 3 ( α 1 , α 2 , β 1 , β 2 ) ] × [ k 1 k 2 k 3 ] + [ D 1 ( α 1 , α 2 , β 1 , β 2 ) D 2 ( α 1 , α 2 , β 1 , β 2 ) D 3 ( α 1 , α 2 , β 1 , β 2 ) ] ,
β 1 = 1 α 1 α 1 ( α 2 1 ) ,
β 2 = α 2 1 1 α 1 α 2 .
z = c r 2 1 + 1 ( 1 + k ) c 2 r 2 + i = 1 N A i Z i ( ρ , φ ) ,
z = c r 2 1 + 1 ( 1 + k ) c 2 r 2 + i = 1 N A i E i ( x , y ) ,
z = c r 2 1 + 1 ( 1 + k ) c 2 r 2 + A 01 x 0 y 1 + A 20 x 2 y 0 + A 02 x 0 y 2 + A 03 x 0 y 3 + + A 80 x 8 y 0 .

Metrics