Abstract

The temperature dependence (from 25°C to 350°C) of laser-induced micro/nanostructures for multiple linearly polarized femtosecond laser pulse (pulse duration τ=35fs, wavelength λ=800nm) irradiation of silicon in air is studied experimentally. Distinct micro/nanostructures are fabricated at elevated temperature. Low spatial frequency, laser-induced periodic ripple structures (LSFL), which are perpendicular to the polarization of the laser beam, are formed at all temperatures. Micrometer-size grooves, which are oriented perpendicular to the LSFL ripples, have been observed in the central part of the irradiated area above 150°C. The threshold to fabricate the LSFL ripples goes from 1.65 to 2kJ/m2 while the temperature of the substrate increases from 25°C to 350°C. The possible mechanism of the temperature dependence of the micro/nanostructure generation is also discussed. These results demonstrate that temperature is an important parameter to be tuned to tailor the micro/nanostructure fabrication.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
    [CrossRef]
  2. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
    [CrossRef]
  3. T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
    [CrossRef]
  4. N. C. Kerr, S. E. Clark, and D. C. Emmony, “High resolution imaging studies into the formation of laser-induced periodic surface structures,” Appl. Opt. 28, 3718–3724 (1989).
    [CrossRef]
  5. Y. Peng, D. Zhang, H. Chen, Y. Wen, S. Luo, L. Chen, K. Chen, and Y. Zhu, “Differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength,” Appl. Opt. 51, 635–639 (2012).
    [CrossRef]
  6. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [CrossRef]
  7. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
    [CrossRef]
  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [CrossRef]
  9. J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
    [CrossRef]
  10. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
    [CrossRef]
  11. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
    [CrossRef]
  12. T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
    [CrossRef]
  13. O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
    [CrossRef]
  14. K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).
  15. B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
    [CrossRef]
  16. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
    [CrossRef]
  17. G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983).
    [CrossRef]
  18. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
    [CrossRef]
  19. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
    [CrossRef]
  20. S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
    [CrossRef]
  21. J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012).
    [CrossRef]
  22. T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
    [CrossRef]
  23. H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
    [CrossRef]
  24. H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
    [CrossRef]

2013

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

2012

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012).
[CrossRef]

Y. Peng, D. Zhang, H. Chen, Y. Wen, S. Luo, L. Chen, K. Chen, and Y. Zhu, “Differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength,” Appl. Opt. 51, 635–639 (2012).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

2011

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

2010

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

2009

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

2008

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

2007

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

2005

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

2001

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

2000

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

1998

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

1997

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
[CrossRef]

1991

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[CrossRef]

1989

1983

G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983).
[CrossRef]

Bonse, J.

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Bosseboeuf, A.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Boulmer, J.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Bourouina, T.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

Chen, C. W.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Chen, H.

Chen, K.

Chen, L.

Chen, X.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Chiang, H. P.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

Clark, S. E.

Costache, F.

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

De Hosson, J. T. M.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Débarre, D.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Delaporte, P.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Deng, G.

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

Derrien, T. J. Y.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

Derrien, T. J.-Y.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

Dufour-Gergam, E.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Emmony, D. C.

Etienne, H.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Feng, G.

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Foss, S. E.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012).
[CrossRef]

Gonzalez, L. P.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

Grigoropoulos, C. P.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
[CrossRef]

Guha, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

Halbwax, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Hernandez, M.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Huis in ’t Veld, A. J.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Huo, H.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Itina, T. E.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983).
[CrossRef]

Johnson, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Kakushima, K.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

Kerr, N. C.

Kerrien, G.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Krishnamurthy, S.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

Kruger, J.

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

Laviron, C.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Leung, P. T.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

Li, H. L.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Li, W.

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

Lin, T. Y.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Liu, K.

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

Luo, S.

Martinuzzi, S.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Mazur, E.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983).
[CrossRef]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

O’Donnell, K. P.

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[CrossRef]

Obona, J. V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Ocelik, V.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Peng, Y.

Perichaud, I.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Ratzke, M.

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

Reif, J.

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

Römer, G. R. B. E.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

Sánchez, E. J.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Sarnet, T.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Sentis, M.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Shen, M.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

Skolski, J. Z. P.

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

Sun, B. K.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
[CrossRef]

Thorstensen, J.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012).
[CrossRef]

Torregrosa, F.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

Torres, R.

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

Tse, W. S.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

Varlamova, O.

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

Venturini, J.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Vervisch, V.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

Wang, C.

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Wang, Y. C.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

Wen, Y.

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Wu, J. J.

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Yaakoubi, N.

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Yu, Z. G.

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

Zhang, D.

Zhang, X.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Zhu, Y.

ACS Nano

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991).
[CrossRef]

Appl. Surf. Sci.

T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012).
[CrossRef]

O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007).
[CrossRef]

T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005).
[CrossRef]

Chin. J. Lasers

K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).

Int. J. Heat Mass Trans.

B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997).
[CrossRef]

J. Appl. Phys.

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[CrossRef]

J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005).
[CrossRef]

S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011).
[CrossRef]

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012).
[CrossRef]

T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013).
[CrossRef]

Nano Lett.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008).
[CrossRef]

Nanotechnology

C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010).
[CrossRef]

Opt. Commun.

H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001).
[CrossRef]

Phys. Rev. B

K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000).
[CrossRef]

J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012).
[CrossRef]

G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983).
[CrossRef]

Thin Solid Films

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[CrossRef]

H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical micrograph of structures formed at different temperatures: (a) room temperature (25°C), (b) 150°C, (c) 250°C, and (d) 350°C. The arrow indicates the direction of the laser polarization.

Fig. 2.
Fig. 2.

Scanning electron micrograph of structures formed at different temperatures. (a) Structure formed at room temperature, (b) Fourier transform of Fig. 1(a), (c) structure formed at 350°C, and (d) Fourier transform of Fig. 1(c). The arrow indicates the direction of the laser polarization.

Fig. 3.
Fig. 3.

Optical micrograph of the structured area. (a) Structure generated by femtosecond laser scanning at room temperature; (b) periphery of the structured area. L is the half-width of the structured area and ω0 is the radius of the beam profile (1/e2). The arrow indicates the direction of the laser polarization.

Fig. 4.
Fig. 4.

Threshold of the LSFL ripple generation and the width of the structured area at elevated temperatures.

Fig. 5.
Fig. 5.

(a) 2D gray maps of efficacy factor η for crystalline silicon as a function of the normalized LIPSS wave vector under excitation of 1.65kJ/m2 irradiation at 800 nm; (b) maximum value of the efficacy factor η for the LSFL feature as a function of the damping rate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F(L)=Fmax·exp(2·L2ωx02),
R(T)=R0+aR·(TT0R),

Metrics