Abstract

The temperature dependence (from 25°C to 350°C) of laser-induced micro/nanostructures for multiple linearly polarized femtosecond laser pulse (pulse duration τ=35fs, wavelength λ=800nm) irradiation of silicon in air is studied experimentally. Distinct micro/nanostructures are fabricated at elevated temperature. Low spatial frequency, laser-induced periodic ripple structures (LSFL), which are perpendicular to the polarization of the laser beam, are formed at all temperatures. Micrometer-size grooves, which are oriented perpendicular to the LSFL ripples, have been observed in the central part of the irradiated area above 150°C. The threshold to fabricate the LSFL ripples goes from 1.65 to 2kJ/m2 while the temperature of the substrate increases from 25°C to 350°C. The possible mechanism of the temperature dependence of the micro/nanostructure generation is also discussed. These results demonstrate that temperature is an important parameter to be tuned to tailor the micro/nanostructure fabrication.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription