Abstract

We demonstrate the ability of our hyperspectral imaging device, based on a scanning Fabry–Perot interferometer, to obtain a single hyper-image of a sample marked with different fluorescent molecules, and to unambiguously discriminate them by observing their spectral fingerprints. An experiment carried out with cyanines, fluorescein, and quantum dots emitting in the yellow–orange region, demonstrates the feasibility of multi-labeled fluorescence microscopy without the use of multiple filter sets or dispersive means.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
    [CrossRef]
  2. M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
    [CrossRef]
  3. M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
    [CrossRef]
  4. T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).
  5. P. J. Miller and C. C. Hoyt, “Multispectral imaging with a liquid crystal tunable filter,” Proc. SPIE 2345, 354–366 (1995).
  6. E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
    [CrossRef]
  7. E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
    [CrossRef]
  8. D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).
  9. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
    [CrossRef]
  10. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
    [CrossRef]
  11. M. Pisani and M. E. Zucco, “Compact imaging spectrometer combining Fourier-transform spectroscopy with a Fabry–Perot interferometer,” Opt. Express 17, 8319–8331 (2009).
    [CrossRef]
  12. M. Q. Pisani and M. E. Zucco, “Fourier-transform-based hyperspectral imaging,” in Fourier-Transforms—Approach to Scientific Principles, G. Nicolic, ed. (InTech, 2011), pp. 427–446.
  13. M. Zucco and M. Pisani, “Fast processing spectral discrimination for hyperspectral imagers based on interferometry,” Meas. Sci. Technol. 25, 055403 (2014).
    [CrossRef]

2014 (2)

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

M. Zucco and M. Pisani, “Fast processing spectral discrimination for hyperspectral imagers based on interferometry,” Meas. Sci. Technol. 25, 055403 (2014).
[CrossRef]

2009 (1)

2006 (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
[CrossRef]

2002 (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
[CrossRef]

1997 (2)

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
[CrossRef]

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

1996 (3)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef]

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

1995 (1)

P. J. Miller and C. C. Hoyt, “Multispectral imaging with a liquid crystal tunable filter,” Proc. SPIE 2345, 354–366 (1995).

Auer, G.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Barlow, C.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Buckwald, R. A.

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

Cabib, D.

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

Coleman, A.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Dickson, R. B.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

du Manoir, S.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Farkas, D. L.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
[CrossRef]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

Gwyn Ballard, S.

M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef]

Haraguchi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
[CrossRef]

Heo, C.

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

Heselmeyer, K.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

Hiraoka, Y.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
[CrossRef]

Hoyt, C. C.

P. J. Miller and C. C. Hoyt, “Multispectral imaging with a liquid crystal tunable filter,” Proc. SPIE 2345, 354–366 (1995).

Janz, S.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Katzir, N.

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

Kim, J.

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Lee, Y.

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

Liyanage, M.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Macville, M.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

Malik, Z.

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

McCormack, S.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
[CrossRef]

Miller, P. J.

P. J. Miller and C. C. Hoyt, “Multispectral imaging with a liquid crystal tunable filter,” Proc. SPIE 2345, 354–366 (1995).

Ning, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Niu, W.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
[CrossRef]

Oh, E.

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

Pisani, M.

M. Zucco and M. Pisani, “Fast processing spectral discrimination for hyperspectral imagers based on interferometry,” Meas. Sci. Technol. 25, 055403 (2014).
[CrossRef]

M. Pisani and M. E. Zucco, “Compact imaging spectrometer combining Fourier-transform spectroscopy with a Fabry–Perot interferometer,” Opt. Express 17, 8319–8331 (2009).
[CrossRef]

Pisani, M. Q.

M. Q. Pisani and M. E. Zucco, “Fourier-transform-based hyperspectral imaging,” in Fourier-Transforms—Approach to Scientific Principles, G. Nicolic, ed. (InTech, 2011), pp. 427–446.

Ried, T.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Schröck, E.

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Shimi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
[CrossRef]

Soeknsen, D. G.

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Speicher, M. R.

M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef]

Suh, M.

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

Veldman, T.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Wachman, E. S.

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
[CrossRef]

Ward, D. C.

M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef]

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Wynshaw-Boris, A.

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
[CrossRef]

Zucco, M.

M. Zucco and M. Pisani, “Fast processing spectral discrimination for hyperspectral imagers based on interferometry,” Meas. Sci. Technol. 25, 055403 (2014).
[CrossRef]

Zucco, M. E.

M. Pisani and M. E. Zucco, “Compact imaging spectrometer combining Fourier-transform spectroscopy with a Fabry–Perot interferometer,” Opt. Express 17, 8319–8331 (2009).
[CrossRef]

M. Q. Pisani and M. E. Zucco, “Fourier-transform-based hyperspectral imaging,” in Fourier-Transforms—Approach to Scientific Principles, G. Nicolic, ed. (InTech, 2011), pp. 427–446.

Biophys. J. (1)

E. S. Wachman, W. Niu, and D. L. Farkas, “AOTF microscope for imaging with increased speed and spectral versatility,” Biophys. J. 73, 1215–1222 (1997).
[CrossRef]

Cell Struct. Funct. (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27, 367–374 (2002).
[CrossRef]

Cytometry A. (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A. 69, 735–747 (2006).
[CrossRef]

J. Biomed. Opt. (1)

E. Oh, C. Heo, J. Kim, M. Suh, Y. Lee, and J. Kim, “Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease,” J. Biomed. Opt. 19, 051207 (2014).
[CrossRef]

J. Mol. Med. (1)

T. Ried, M. Liyanage, S. du Manoir, K. Heselmeyer, G. Auer, M. Macville, and E. Schröck, “Tumor cytogenetics revisited: comparative genomic hybridization and spectral karyotyping,” J. Mol. Med. 75, 801–814 (1997).

Meas. Sci. Technol. (1)

M. Zucco and M. Pisani, “Fast processing spectral discrimination for hyperspectral imagers based on interferometry,” Meas. Sci. Technol. 25, 055403 (2014).
[CrossRef]

Nat. Genet. (2)

M. R. Speicher, S. Gwyn Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12, 368–375 (1996).
[CrossRef]

M. Liyanage, A. Coleman, S. du Manoir, T. Veldman, S. McCormack, R. B. Dickson, C. Barlow, A. Wynshaw-Boris, S. Janz, J. Wienberg, M. A. Ferguson-Smith, E. Schröck, and T. Ried, “Multicolour spectral karyotyping of mouse chromosomes,” Nat. Genet. 14, 312–315 (1996).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

P. J. Miller and C. C. Hoyt, “Multispectral imaging with a liquid crystal tunable filter,” Proc. SPIE 2345, 354–366 (1995).

Science (1)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273, 494–497 (1996).
[CrossRef]

Other (2)

D. Cabib, R. A. Buckwald, Y. Garini, N. Katzir, Z. Malik, and D. G. Soeknsen, “Spectral bio-imaging methods for biological research, medical diagnostics and therapy,” U.S. patent5,784,162 (21July1998).

M. Q. Pisani and M. E. Zucco, “Fourier-transform-based hyperspectral imaging,” in Fourier-Transforms—Approach to Scientific Principles, G. Nicolic, ed. (InTech, 2011), pp. 427–446.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental layout, as described in the text.

Fig. 2.
Fig. 2.

Picture of the experimental setup as described in the text.

Fig. 3.
Fig. 3.

Frame of the video with the interference pattern. The image is 300×300 pixels large (about 10 k pixel each square sector). Well A2 is filled with the quantum dot suspension; B3 with fluorescein; B1 and B2 are filled, respectively, with CY3 and CY3.25; C1 to C3 are filled, respectively, with CY3.5 and with more diluted solutions of CY3.25 and CY3.5 (see text regarding cyanine family of molecules). Wells A1 and A3 are empty. Note that the emission intensity of various wells spans a wide dynamic range, from the strong fluorescein in B3 to the weak cyanine in C3. That makes the sample more representative of a real marked biological sample.

Fig. 4.
Fig. 4.

Spectra calculated for each well of the sample. QDOT is the spectrum relative to the quantum dot solution, FLUO is the fluorescein spectrum, and CY1 to CY5 are the different cyanine dyes. Some of the spectra have been measured twice in different areas of the same well (to check for repeatability), and are represented on the graph in the same color. In the graph, spectra are amplitude-normalized to 1, to compare them more easily.

Fig. 5.
Fig. 5.

False color image, where each pixel is assigned to one of the seven reference spectra in Fig. 4, having smaller Euclidean distance (see text). Despite the wide dynamic range, nearly all the pixels of each well have been assigned unambiguously to the correct class.

Fig. 6.
Fig. 6.

Some of the spectra of the same multi-labeled sample obtained with larger objective aperture (f=2) allowing a shorter exposure time at the expense of lower spectral resolution. Despite the decreased spectral resolution the different spectral shapes can be appreciated.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

dR=λi=550nm700nm[SM(λi)SR(λi)]2,

Metrics