Abstract

Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
    [CrossRef]
  2. N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
    [CrossRef]
  3. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.
  4. I. S. Nerbo, S. L. Roy, M. Foldyna, E. Sondergard, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 12551–12561 (2011).
    [CrossRef]
  5. B. Peng, T. Ding, and P. Wang, “Propagation of polarized light through textile material,” Appl. Opt. 51, 6325–6334 (2012).
    [CrossRef]
  6. A. Pierangelo, A. Benali, M. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011).
    [CrossRef]
  7. M. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010).
    [CrossRef]
  8. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Haj Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
    [CrossRef]
  9. N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
    [CrossRef]
  10. M. Dubreuil, P. Babilotte, L. Martin, D. Sevrain, S. Rivet, Y. L. Grand, G. L. Brun, B. Turlin, and B. L. Jeune, “Mueller matrix polarimetry for improved liver fibrosis diagnosis,” Opt. Lett. 37, 1061–1063 (2012).
    [CrossRef]
  11. P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
    [CrossRef]
  12. R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
    [CrossRef]
  13. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [CrossRef]
  14. J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
    [CrossRef]
  15. S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
    [CrossRef]
  16. X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).
  17. N. Zeng, X. Y. Jiang, Q. Gao, Y. H. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
    [CrossRef]
  18. H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).
  19. M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties,” Biomed. Opt. Express 2, 3248–3258 (2011).
    [CrossRef]
  20. G. Anna, H. Sauer, F. Goudail, and D. Dolfi, “Fully tunable active polarization imager for contrast enhancement and partial polarimetry,” Appl. Opt. 51, 5302–5309 (2012).
    [CrossRef]
  21. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
    [CrossRef]
  22. H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
    [CrossRef]
  23. T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
    [CrossRef]
  24. H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
    [CrossRef]
  25. T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
    [CrossRef]

2013 (4)

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Haj Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[CrossRef]

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[CrossRef]

2012 (4)

2011 (5)

2010 (2)

2009 (3)

2008 (1)

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

2007 (1)

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

2004 (1)

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

2002 (1)

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

2001 (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

1991 (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

Aas, L. M. S.

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

Ahmad, M.

Alali, S.

Anderson, R. R.

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

Anna, G.

Antonelli, M.

Antonelli, M.-R.

Babilotte, P.

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Benali, A.

Brun, G. L.

Cohen, H.

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

de Davies, C. L.

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

De Martino, A.

Ding, T.

Dolfi, D.

Du, E.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

Dubreuil, M.

Ellingsen, P. G.

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

Fallet, C.

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Haj Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[CrossRef]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
[CrossRef]

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Foldyna, M.

Gao, Q.

Gayet, B.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[CrossRef]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
[CrossRef]

A. Pierangelo, A. Benali, M. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011).
[CrossRef]

M. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010).
[CrossRef]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Ghosh, N.

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Goudail, F.

Grand, Y. L.

Guo, Y. H.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Haj Ibrahim, B.

He, H. H.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
[CrossRef]

He, Y. H.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
[CrossRef]

N. Zeng, X. Y. Jiang, Q. Gao, Y. H. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[CrossRef]

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Ikram, M.

Isenhath, S.

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Jacques, S. L.

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

Jeune, B. L.

Jiang, X. Y.

Kildemo, M.

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

I. S. Nerbo, S. L. Roy, M. Foldyna, E. Sondergard, and M. Kildemo, “Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment,” Opt. Express 19, 12551–12561 (2011).
[CrossRef]

Kim, A.

Lee, K.

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

Li, D. Z.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[CrossRef]

Li, R.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Li, S.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Li, W.

Liao, R.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
[CrossRef]

Lilledahl, M. B.

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

Ma, H.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
[CrossRef]

T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[CrossRef]

N. Zeng, X. Y. Jiang, Q. Gao, Y. H. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[CrossRef]

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Manhas, S.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[CrossRef]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. Haj Ibrahim, S. Manhas, C. Fallet, M.-R. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[CrossRef]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
[CrossRef]

Martin, L.

Martino, A.

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[CrossRef]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
[CrossRef]

A. Pierangelo, A. Benali, M. Antonelli, T. Novikova, P. Validire, B. Gayet, and A. Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011).
[CrossRef]

M. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18, 10200–10208 (2010).
[CrossRef]

Nazac, A.

Nerbo, I. S.

Novikova, T.

Parahl, S. A.

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

Peng, B.

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Pierangelo, A.

Ramella-Roman, J. C.

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

Rivet, S.

Roy, S. L.

Samathama, R.

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Sauer, H.

Sevrain, D.

Sondergard, E.

Tuchin, V. V.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.

Turlin, B.

Validire, P.

Vitkin, I. A.

M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties,” Biomed. Opt. Express 2, 3248–3258 (2011).
[CrossRef]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Wang, L. V.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.

Wang, P.

Weisel, R. D.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Wilson, B. C.

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Wood, M. F. G.

M. Ahmad, S. Alali, A. Kim, M. F. G. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties,” Biomed. Opt. Express 2, 3248–3258 (2011).
[CrossRef]

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Yun, T. L.

Zeng, N.

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

H. H. He, N. Zeng, R. Liao, T. L. Yun, W. Li, Y. H. He, and H. Ma, “Application of sphere–cylinder scattering model to skeletal muscle,” Opt. Express 18, 15104–15112 (2010).
[CrossRef]

T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17, 16590–16602 (2009).
[CrossRef]

N. Zeng, X. Y. Jiang, Q. Gao, Y. H. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[CrossRef]

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Zimnyakov, D. A.

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Novikova, A. Pierangelo, S. Manhas, A. Benali, P. Validire, B. Gayet, and A. Martino, “The origins of polarimetric image contrast between healthy and cancerous human colon tissue,” Appl. Phys. Lett. 102, 241103 (2013).
[CrossRef]

Arch. Dermatol. (1)

R. R. Anderson, “Polarized light examination and photography of the skin,” Arch. Dermatol. 127, 1000–1005 (1991).
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (6)

P. G. Ellingsen, M. B. Lilledahl, L. M. S. Aas, C. L. de Davies, and M. Kildemo, “Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy,” J. Biomed. Opt. 16, 116002 (2011).
[CrossRef]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M. Antonelli, T. Novikova, B. Gayet, P. Validire, and A. Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17, 066009 (2012).
[CrossRef]

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, Y. H. He, and H. Ma, “Two-dimensional and surface backscattering Mueller matrices of anisotropic sphere–cylinder scattering media: a quantitative study of influence from fibrous scatterers,” J. Biomed. Opt. 18, 046002 (2013).
[CrossRef]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef]

J. C. Ramella-Roman, K. Lee, S. A. Parahl, and S. L. Jacques, “Design, testing, and clinical studies of a handheld polarized light camera,” J. Biomed. Opt. 9, 1305–1310 (2004).
[CrossRef]

N. Ghosh and I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16, 110801 (2011).
[CrossRef]

J. Biophotonics (1)

N. Ghosh, M. F. G. Wood, S. Li, R. D. Weisel, B. C. Wilson, R. Li, and I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J. Biophotonics 2, 145–156 (2009).
[CrossRef]

Nat. Med. (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Photon. Laser Med. (1)

H. H. He, N. Zeng, E. Du, Y. H. Guo, D. Z. Li, R. Liao, and H. Ma, “A possible quantitative Mueller matrix transformation technique for anisotropic scattering media,” Photon. Laser Med. 2, 129–137 (2013).

Proc. SPIE (1)

S. L. Jacques, R. Samathama, S. Isenhath, and K. Lee, “Polarized light camera to guide surgical excision of skin cancers,” Proc. SPIE 6842, 68420I (2008).
[CrossRef]

Prog. Biochem. Biophys. (1)

X. Y. Jiang, N. Zeng, Y. H. He, and H. Ma, “Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles,” Prog. Biochem. Biophys. 34, 659–663 (2007).

Other (1)

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, “Optical polarization in biomedical applications,” in Tissue Structure and Optical Models, E. Greenbaum, ed. (Springer, 2006), pp. 7–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of experimental setup for the backscattering Mueller matrix measurement. P, polarizer; QW, quarter-wave plate; L, lens. The polarized light illuminates the sample at about 20° to the normal to eliminate the surface reflection. The diameter of the illuminated area is about 1.8 cm.

Fig. 2.
Fig. 2.

Photograph of the textile samples: (a) acetate; (b) cotton; (c) silk; and (d) ramie.

Fig. 3.
Fig. 3.

Experimental results of backscattering Mueller matrix for acetate sample. All the Mueller matrix elements are normalized by the m11. For better visual effects, the color codes are from 0 to 1 for m11; from –0.5 to 0.5 for m22, m33, and m44; and from 0.1 to 0.1 for other elements.

Fig. 4.
Fig. 4.

Histogram of average values of Mueller matrix elements for different textile samples. All the Mueller matrix elements are normalized by the m11.

Fig. 5.
Fig. 5.

Experimental results of Mueller matrices for the silk sample in different orientations. All the Mueller matrix elements are normalized by the m11.

Fig. 6.
Fig. 6.

Statistical distribution curves of the experimental results for (a) MMT parameter A, (b) MMT parameter b for textile samples: acetate (black), cotton (blue), ramie (green), and silk (red). The areas under each distribution curve are normalized to 1.

Fig. 7.
Fig. 7.

Rotation dependence of experimental measurements of MMT parameters A (blue squares), and b (red circles), for the acetate sample at 20° oblique incidence.

Fig. 8.
Fig. 8.

Monte Carlo simulated angle-dependent curves of (a) MMT parameter A, and (b) MMT parameter b for normal incidence (red dashed lines) and oblique incidence 10° (blue solid lines), 20° (green dot lines).

Tables (1)

Tables Icon

Table 1. Average Values of MMT and RLPI Parameters for Different Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M=12[HH+HV+VH+VVHH+HVVHVVPH+PVMPMMRH+RVLHLVHHHV+VHVVHHHVVH+VVPHPVMH+MVRHRVLH+LVHPHM+VPVMHPHMVP+VMPPPMMP+MMRPRMLP+LMHRLL+VRRLHRVR+VLHLPRMR+MLPLRRRLLR+LL].
A=[B2(m22m33m23m32)2]1/2B=(m222+m232+m322+m332)/2C=(m212+m312)G=A/B.
A=2b·tb2+t2[0,1]b=m22+m332t=(m22m33)2+(m23+m32)22.
M(φ)=R(φ)·M·R(φ),
R(φ)=(10000cos2φsin2φ00sin2φcos2φ00001).

Metrics