Abstract

System requirements for many military electro-optic and IR camera systems reflect the need for both wide-field-of-view situational awareness as well as high-resolution imaging for target identification. In this work we present a new imaging system architecture designed to perform both functions simultaneously and the AWARE 10 camera as an example at visible wavelengths. We first describe the basic system architecture and user interface followed by a laboratory characterization of the system optical performance. We then describe a field experiment in which the camera was used to identify several maritime targets at varying range. The experimental results indicate that users of the system are able to correctly identify 10m targets at between 4 and 6 km with 70% accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Najar, R. Swaminathan, and J. M. Gluckman, “Combined wide angle and narrow angle imaging system and method for surveillance and monitoring,” https://www.collectiveip.com/patents/US06215519B1 (1998).
  2. J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
    [CrossRef]
  3. J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013).
    [CrossRef]
  4. J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007).
    [CrossRef]
  5. “AN/AAQ-37 distributed aperture system,” http://www.northropgrumman.com/capabilities/anaaq37f35/pages/default.aspx (2013).
  6. T. C. Brusgard, “Distributed aperture infrared sensor system,” Proc. SPIE 3698, 58–66 (1999).
    [CrossRef]
  7. D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
    [CrossRef]
  8. B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
    [CrossRef]
  9. D. W. Sweeney, “Overview of the large synoptic survey telescope project,” Proc. SPIE 6267, 626706 (2006).
    [CrossRef]
  10. N. Kaiser, “Pan-STARRS: a wide-field optical survey telescope array,” Proc. SPIE 5489, 11–22 (2004).
    [CrossRef]
  11. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
    [CrossRef]
  12. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [CrossRef]
  13. D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
    [CrossRef]
  14. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012).
    [CrossRef]
  15. D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011).
    [CrossRef]
  16. I. Stamenov, I. P. Agurok, and J. E. Ford, “Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs,” Appl. Opt. 51, 7648–7661 (2012).
    [CrossRef]
  17. J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
    [CrossRef]
  18. W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97–109 (1970).
    [CrossRef]
  19. “Example AWARE 10 imagery,” http://gigapan.com/gigapans?query=disp (2013).
  20. “Example 300 megapixel camera imagery,” http://gigapan.com/gigapans?query=aqueti (2013).

2013

J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
[CrossRef]

J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013).
[CrossRef]

2012

E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012).
[CrossRef]

I. Stamenov, I. P. Agurok, and J. E. Ford, “Optimization of two-glass monocentric lenses for compact panoramic imagers: general aberration analysis and specific designs,” Appl. Opt. 51, 7648–7661 (2012).
[CrossRef]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

2011

2010

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

2009

2008

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

2007

J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007).
[CrossRef]

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

2006

D. W. Sweeney, “Overview of the large synoptic survey telescope project,” Proc. SPIE 6267, 626706 (2006).
[CrossRef]

2004

N. Kaiser, “Pan-STARRS: a wide-field optical survey telescope array,” Proc. SPIE 5489, 11–22 (2004).
[CrossRef]

1999

T. C. Brusgard, “Distributed aperture infrared sensor system,” Proc. SPIE 3698, 58–66 (1999).
[CrossRef]

1970

W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97–109 (1970).
[CrossRef]

Agurok, I. P.

Antoniades, J.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Brady, D. J.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012).
[CrossRef]

D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011).
[CrossRef]

D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express 17, 10659–10674 (2009).
[CrossRef]

Braun, M.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Brewer, P.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Brusgard, T. C.

T. C. Brusgard, “Distributed aperture infrared sensor system,” Proc. SPIE 3698, 58–66 (1999).
[CrossRef]

Chester, D.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Devitt, J.

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

Edwards, J.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Ford, J. E.

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Gershfield, C.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Haas, D.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Hagen, N.

Hastings, W. K.

W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97–109 (1970).
[CrossRef]

Hines, J.

J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
[CrossRef]

Judd, K. P.

Kaiser, N.

N. Kaiser, “Pan-STARRS: a wide-field optical survey telescope array,” Proc. SPIE 5489, 11–22 (2004).
[CrossRef]

Kendrick, R. L.

J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007).
[CrossRef]

Kim, J.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Klepfer, R. O.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Leininger, B.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Liu, E.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Madden, D. G.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt. 51, 4691–4702 (2012).
[CrossRef]

D. L. Marks, E. J. Tremblay, J. E. Ford, and D. J. Brady, “Microcamera aperture scale in monocentric gigapixel cameras,” Appl. Opt. 50, 5824–5833 (2011).
[CrossRef]

Marron, J. C.

J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007).
[CrossRef]

Menon, R.

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

Nichols, J. D.

J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
[CrossRef]

J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013).
[CrossRef]

Nichols, J. M.

J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013).
[CrossRef]

J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
[CrossRef]

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

Olson, C. C.

Pitalo, S. K.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Pollock, D. B.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Reardon, P. J.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Rogers, T. E.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Shafique, K. H.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Son, H. S.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Stamenov, I.

Stevens, M.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Sweeney, D. W.

D. W. Sweeney, “Overview of the large synoptic survey telescope project,” Proc. SPIE 6267, 626706 (2006).
[CrossRef]

Targrove, J. D.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Tremblay, E. J.

Underwood, C. N.

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Waterman, J. R.

J. M. Nichols, K. P. Judd, C. C. Olson, J. R. Waterman, and J. D. Nichols, “Estimating detection and identification probabilities in maritime target acquisition,” Appl. Opt. 52, 2531–2545 (2013).
[CrossRef]

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

Wein, S.

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

Appl. Opt.

Biometrika

W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika 57, 97–109 (1970).
[CrossRef]

Nature

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Opt. Eng.

D. L. Marks, H. S. Son, J. Kim, and D. J. Brady, “Engineering a gigapixel monocentric multiscale camera,” Opt. Eng. 51, 083202 (2012).
[CrossRef]

J. M. Nichols, J. Hines, and J. D. Nichols, “Selecting among competing models for electro-optic, infrared camera system range performance,” Opt. Eng. 52, 113108 (2013).
[CrossRef]

J. M. Nichols, J. R. Waterman, R. Menon, and J. Devitt, “Modeling and analysis of a high performance mid-wave infrared panoramic periscope,” Opt. Eng. 49, 113202 (2010).
[CrossRef]

Opt. Express

Proc. SPIE

J. C. Marron and R. L. Kendrick, “Distributed aperture active imaging,” Proc. SPIE 6550, 65500A (2007).
[CrossRef]

T. C. Brusgard, “Distributed aperture infrared sensor system,” Proc. SPIE 3698, 58–66 (1999).
[CrossRef]

D. B. Pollock, T. E. Rogers, R. O. Klepfer, P. J. Reardon, C. N. Underwood, and S. K. Pitalo, “Aerial video reconnaissance using large sensor arrays,” Proc. SPIE 6538, 65381X (2007).
[CrossRef]

B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu, M. Stevens, C. Gershfield, M. Braun, J. D. Targrove, S. Wein, P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous real-time ground ubiquitous surveillance-imaging system (ARGUS-IS),” Proc. SPIE 6981, 69810H (2008).
[CrossRef]

D. W. Sweeney, “Overview of the large synoptic survey telescope project,” Proc. SPIE 6267, 626706 (2006).
[CrossRef]

N. Kaiser, “Pan-STARRS: a wide-field optical survey telescope array,” Proc. SPIE 5489, 11–22 (2004).
[CrossRef]

Other

S. K. Najar, R. Swaminathan, and J. M. Gluckman, “Combined wide angle and narrow angle imaging system and method for surveillance and monitoring,” https://www.collectiveip.com/patents/US06215519B1 (1998).

“AN/AAQ-37 distributed aperture system,” http://www.northropgrumman.com/capabilities/anaaq37f35/pages/default.aspx (2013).

“Example AWARE 10 imagery,” http://gigapan.com/gigapans?query=disp (2013).

“Example 300 megapixel camera imagery,” http://gigapan.com/gigapans?query=aqueti (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Three-dimensional rendering of the AWARE 10 optics. The purple ball in the front is the AWARE 10 objective, and the green cylinders are microcameras. The AWARE 10 design accommodates up to 382 microcameras, to achieve 4 gigapixels over a 100°×60° FOV.

Fig. 2.
Fig. 2.

AWARE 10 optics showing the full optical train as well as the seven elements of the microcamera.

Fig. 3.
Fig. 3.

Nominal MTF of a single field of the AWARE 10 camera. Because of symmetry, this is nominally identical for all microcameras. The IFOV is 26 μrad and corresponds to 357cycles/mm (1.4 μm pixels). OTF, optical transfer function (equivalent to modulation transfer function in this context). The line drawn from T denotes the tangential MTF curve, and the line drawn from S denotes the sagittal MTF curve.

Fig. 4.
Fig. 4.

Relative illumination of a microcamera, showing the transition of illumination between microcameras. The microcamera physical cone angle is 1.8° and is designed to image to at least 2.6° so that sufficient overlap occurs between fields of the microcamera. For angles more than 1.8° from the center (assuming the closest microcamera spacing), the illumination and resolution are better on the adjacent microcamera.

Fig. 5.
Fig. 5.

Monte Carlo simulation of MTF performance under the designed tolerances. The tolerances are ±25μm element and surface decenter, ±0.1° element and surface tilt, and ±50μm element thickness and spacing error. The upper left plot is for the 0° field, the upper right plot is for the 1.5° field, the lower left plot is for the 2.0° field, and the lower right plot is for the 2.6° field. OTF, optical transfer function (equivalent to modulation transfer function in this context). The line drawn from T denotes the tangential MTF curve, and the line drawn from S denotes the sagittal MTF curve.

Fig. 6.
Fig. 6.

Photograph of the microcamera including the optics barrel and sensor module, collar, and harness wires.

Fig. 7.
Fig. 7.

Photograph of the interior of the AWARE 10 camera including rows of microcameras, G2 modules, and G1 modules. The G2 and dome are connected to a closed circulating water loop to exchange heat with the outside air.

Fig. 8.
Fig. 8.

Screen captures of the user interface. The top view includes the entire FOV, while the bottom view is a magnified view of an area imaged by one microcamera, in this case the sky box. A thumbnail view at the upper left includes a yellow box showing the included area in the viewport. These are photographs of the North Carolina State University and Duke University football game at Wallace Wade Stadium at Duke University on November 9, 2013.

Fig. 9.
Fig. 9.

Photograph of the AWARE 10 camera and Dr. Jonathan Nichols at the Naval Research Laboratory Chesapeake Bay Detachment test site.

Fig. 10.
Fig. 10.

Polychromatic MTF of six microcameras as measured by the slant edge method.

Fig. 11.
Fig. 11.

Histogram of the performance of 397 of the assembled AWARE 10 microcameras, indicating the number of cycles/mm at which 20% MTF is achieved.

Fig. 12.
Fig. 12.

Target boats used in this experiment. From left to right: duck boat, fishing boat, and crab boat. The characteristic dimension of each of these watercraft (broadside orientation) was 4, 7, and 10 m, respectively.

Fig. 13.
Fig. 13.

Probability of identification (PID) is estimated using the MCMC algorithm described in Section 4.B and plotted in the above range performance curves. The maximum a posterior curve is given by the solid line, while the associated 95% credible interval is given by the dashed line. For historical purposes we also provide the ML estimates at each range, denoted by crosses in the figure. The estimated 70% probability of identification range is highlighted with an asterisk.

Tables (3)

Tables Icon

Table 1. Prescription for a 10-Gigapixel Glass Objective and Microcamera Using Spherical Glass Opticsa

Tables Icon

Table 2. Table of Glasses and Properties Used in 10-Gigapixel Glass Multiscale Design

Tables Icon

Table 3. Summary of Observer Responses for Range=6000m

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p(r,s)=11+exp(a1sra2s),s=1,2,3
fKs(ks(rj)|as)=j=1RNjs!(1ks(rj))!ks(rj)!(1(11+exp(a1srja2s)))1ks(rj)×(11+exp(a1srja2s))ks(rj),
fA(as|ks(rj))=fKs(ks(rj)|a)fπ(as)R2fKs(ks(rj)|a)fπ(as)das,
p^(rj,s)=ks(rj)Njs,

Metrics