Abstract

This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. I. Chang, Hyperspectral Data Exploitation: Theory and Applications (Wiley, 2007).
  2. H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (Wiley, 2007).
  3. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
    [CrossRef]
  4. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid-crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  5. S. E. Harris and R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744–747 (1969).
    [CrossRef]
  6. I. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
    [CrossRef]
  7. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
    [CrossRef]
  8. A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.
  9. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
    [CrossRef]
  10. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344 (2010).
    [CrossRef]
  11. J. Y. Hardeberg, Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches (Universal-Publishers, 2001).
  12. J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).
  13. R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
  14. M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.
  15. M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.
  16. B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).
  17. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20, 7173–7183 (2012).
    [CrossRef]
  18. Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of a low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings 12th International AIC Congress (2013), pp. 363–366.
  19. G. Langfelder, “Spectrally reconfigurable pixels for dual-color-mode imaging sensors,” Appl. Opt. 51, A91–A98 (2012).
    [CrossRef]
  20. A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).
  21. G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).
  22. M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.
  23. G. D. Finlayson, J. Vazquez-Corral, S. Süsstrunk, and M. Vanrell, “Spectral sharpening by spherical sampling,” J. Opt. Soc. Am. A 29, 1199–1210 (2012).
    [CrossRef]
  24. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).
  25. P. M. Hubel, “Foveon technology and the changing landscape of digital cameras,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2005), pp. 314–317.
  26. M. S. Drew and G. D. Finlayson, “Spectral sharpening with positivity,” J. Opt. Soc. Am. A 17, 1361–1370 (2000).
    [CrossRef]
  27. A. Lin and F. Imai, “Efficient spectral imaging based on imaging systems with scene adaptation using tunable color pixels,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2011), pp. 332–338.
  28. F. H. Imai, “Computational spectral imaging based on adaptive spectral imaging,” in Computational Color Imaging (Springer, 2013), pp. 35–52.
  29. K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890 (2008).
  30. L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).
  31. J. Brauers and T. Aach, “A color filter array-based multispectral camera,” in Workshop Farbbildverarbeitung (Ilmenau, 2006).
  32. G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).
  33. G. Langfelder, “CMOS pixels directly sensitive to both visible and near-infrared radiation,” IEEE Trans. Electron Dev. 60, 1695–1700 (2013).
  34. M. Hashimoto and J. Kishimoto, “Two-shot type 6-band still image capturing system using commercial digital camera and custom color filter,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2008), pp. 538–541.
  35. M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.
  36. I. Chatzis, V. Kappatos, and E. Dermatas, “Filter selection for multi-spectral image acquisition using the feature vector analysis methods,” in Intelligent Production Machines and Systems: 2nd I* PROMS Virtual Conference (Elsevier Science, 2007).
  37. Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.
  38. Natural Color System (NCS). Scandinavian Colour Institute of Stockholm, Sweden, (1979).
  39. A. Hård and L. Sivik, “NCS- natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981).
    [CrossRef]
  40. G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).
  41. http://www.andovercorp.com/Web_store/Standard_BP/Std_BP_General.php .
  42. J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm,” J. Roy. Stat. Soc. C-App 28, 100–108 (1979).
  43. J. Hernández-Andrés, J. Romero, and R. L. Lee, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain,” J. Opt. Soc. Am. A 18, 412–420 (2001).
    [CrossRef]
  44. V. Heikkinen, A. Mirhashemi, and J. Alho, “Link functions and Matérn kernel in the estimation of reflectance spectra from RGB responses,” J. Opt. Soc. Am. A 30, 2444–2454 (2013).
    [CrossRef]
  45. F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Conference on Colour in Graphics, Image and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.
  46. G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
    [CrossRef]
  47. J. L. Nieves, E. M. Valero, S. M. Nascimento, J. Hernández-Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696–5703 (2005).
    [CrossRef]
  48. V. Heikkinen, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, T. Jaaskelainen, and S. Lee, “Regularized learning framework in the estimation of reflectance spectra from camera responses,” J. Opt. Soc. Am. A 24, 2673–2683 (2007).
    [CrossRef]
  49. V. Heikkinen, “Kernel methods for estimation and classification of data from spectral imaging,” Ph.D. dissertation (Faculty of Forestry and Natural Sciences, University of Eastern Finland, 2011).
  50. M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

2013 (3)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

G. Langfelder, “CMOS pixels directly sensitive to both visible and near-infrared radiation,” IEEE Trans. Electron Dev. 60, 1695–1700 (2013).

V. Heikkinen, A. Mirhashemi, and J. Alho, “Link functions and Matérn kernel in the estimation of reflectance spectra from RGB responses,” J. Opt. Soc. Am. A 30, 2444–2454 (2013).
[CrossRef]

2012 (3)

2011 (3)

G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

2010 (1)

2009 (1)

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).

2008 (3)

J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).

K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890 (2008).

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

2007 (1)

2006 (2)

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
[CrossRef]

2005 (3)

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

J. L. Nieves, E. M. Valero, S. M. Nascimento, J. Hernández-Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696–5703 (2005).
[CrossRef]

2002 (1)

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

2001 (1)

2000 (1)

1997 (1)

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

1994 (1)

1981 (2)

I. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

A. Hård and L. Sivik, “NCS- natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981).
[CrossRef]

1979 (1)

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm,” J. Roy. Stat. Soc. C-App 28, 100–108 (1979).

1969 (1)

Aach, T.

J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).

J. Brauers and T. Aach, “A color filter array-based multispectral camera,” in Workshop Farbbildverarbeitung (Ilmenau, 2006).

Alho, J.

Altunbasak, Y.

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

Aoki, T.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

Berns, R. S.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Conference on Colour in Graphics, Image and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

Bombelli, L.

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

Brauers, J.

J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).

J. Brauers and T. Aach, “A color filter array-based multispectral camera,” in Workshop Farbbildverarbeitung (Ilmenau, 2006).

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Chang, C. I.

C. I. Chang, Hyperspectral Data Exploitation: Theory and Applications (Wiley, 2007).

Chang, I.

I. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

Chatzis, I.

I. Chatzis, V. Kappatos, and E. Dermatas, “Filter selection for multi-spectral image acquisition using the feature vector analysis methods,” in Intelligent Production Machines and Systems: 2nd I* PROMS Virtual Conference (Elsevier Science, 2007).

Cohen, I.

Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.

Dalal, E.

G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Dermatas, E.

I. Chatzis, V. Kappatos, and E. Dermatas, “Filter selection for multi-spectral image acquisition using the feature vector analysis methods,” in Intelligent Production Machines and Systems: 2nd I* PROMS Virtual Conference (Elsevier Science, 2007).

Drew, M. S.

Finlayson, G. D.

Fossum, E. R.

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

Gao, L.

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
[CrossRef]

Garrote, E.

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

Geladi, P.

H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (Wiley, 2007).

Glotzbach, J.

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

Grahn, H.

H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (Wiley, 2007).

Gunturk, B.

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

Hagen, N.

Hård, A.

A. Hård and L. Sivik, “NCS- natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981).
[CrossRef]

Hardeberg, J. Y.

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

J. Y. Hardeberg, Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches (Universal-Publishers, 2001).

Harris, S. E.

Hartigan, J. A.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm,” J. Roy. Stat. Soc. C-App 28, 100–108 (1979).

Hashimoto, M.

M. Hashimoto and J. Kishimoto, “Two-shot type 6-band still image capturing system using commercial digital camera and custom color filter,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2008), pp. 538–541.

Hauta-Kasari, M.

Heikkinen, V.

V. Heikkinen, A. Mirhashemi, and J. Alho, “Link functions and Matérn kernel in the estimation of reflectance spectra from RGB responses,” J. Opt. Soc. Am. A 30, 2444–2454 (2013).
[CrossRef]

V. Heikkinen, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, T. Jaaskelainen, and S. Lee, “Regularized learning framework in the estimation of reflectance spectra from camera responses,” J. Opt. Soc. Am. A 24, 2673–2683 (2007).
[CrossRef]

V. Heikkinen, “Kernel methods for estimation and classification of data from spectral imaging,” Ph.D. dissertation (Faculty of Forestry and Natural Sciences, University of Eastern Finland, 2011).

M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

Hernández-Andrés, J.

J. L. Nieves, E. M. Valero, S. M. Nascimento, J. Hernández-Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696–5703 (2005).
[CrossRef]

J. Hernández-Andrés, J. Romero, and R. L. Lee, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain,” J. Opt. Soc. Am. A 18, 412–420 (2001).
[CrossRef]

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.

Hirakawa, K.

K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890 (2008).

Hoyt, C. C.

Hubel, P. M.

P. M. Hubel, “Foveon technology and the changing landscape of digital cameras,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2005), pp. 314–317.

Imai, F.

A. Lin and F. Imai, “Efficient spectral imaging based on imaging systems with scene adaptation using tunable color pixels,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2011), pp. 332–338.

Imai, F. H.

F. H. Imai, “Computational spectral imaging based on adaptive spectral imaging,” in Computational Color Imaging (Springer, 2013), pp. 35–52.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Conference on Colour in Graphics, Image and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

Ito, K.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

Jaaskelainen, T.

Jetsu, T.

Kappatos, V.

I. Chatzis, V. Kappatos, and E. Dermatas, “Filter selection for multi-spectral image acquisition using the feature vector analysis methods,” in Intelligent Production Machines and Systems: 2nd I* PROMS Virtual Conference (Elsevier Science, 2007).

Kashino, K.

M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.

Kawanishi, T.

M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

Kester, R. T.

Kishimoto, J.

M. Hashimoto and J. Kishimoto, “Two-shot type 6-band still image capturing system using commercial digital camera and custom color filter,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2008), pp. 538–541.

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Langfelder, G.

G. Langfelder, “CMOS pixels directly sensitive to both visible and near-infrared radiation,” IEEE Trans. Electron Dev. 60, 1695–1700 (2013).

G. Langfelder, “Spectrally reconfigurable pixels for dual-color-mode imaging sensors,” Appl. Opt. 51, A91–A98 (2012).
[CrossRef]

G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.

M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

Lee, R. L.

Lee, S.

Lin, A.

A. Lin and F. Imai, “Efficient spectral imaging based on imaging systems with scene adaptation using tunable color pixels,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2011), pp. 332–338.

Longoni, A.

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

Lu, Y.

Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.

Malzbender, T.

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

Mansouri, A.

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).

Martínez-Domingo, M.

M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.

M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
[CrossRef]

Mersereau, R.

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

Miao, L.

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

Mirhashemi, A.

Morris, H. R.

Mukai, R.

M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.

Murakami, Y.

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20, 7173–7183 (2012).
[CrossRef]

Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of a low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings 12th International AIC Congress (2013), pp. 363–366.

Nascimento, S. M.

Nieves, J. L.

J. L. Nieves, E. M. Valero, S. M. Nascimento, J. Hernández-Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696–5703 (2005).
[CrossRef]

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

Ohyama, N.

Parkkinen, J.

Qi, H.

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

Ramanath, R.

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

Rodríguez, A.

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

Romero, J.

J. L. Nieves, E. M. Valero, S. M. Nascimento, J. Hernández-Andrés, and J. Romero, “Multispectral synthesis of daylight using a commercial digital CCD camera,” Appl. Opt. 44, 5696–5703 (2005).
[CrossRef]

J. Hernández-Andrés, J. Romero, and R. L. Lee, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain,” J. Opt. Soc. Am. A 18, 412–420 (2001).
[CrossRef]

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

Rosen, M. R.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Conference on Colour in Graphics, Image and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

Sakaguchi, Y.

M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.

Schafer, R.

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Schulte, N.

J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).

Sharma, G.

G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Shrestha, R.

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).

Sivik, L.

A. Hård and L. Sivik, “NCS- natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981).
[CrossRef]

Snyder, W.

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

Süsstrunk, S.

Takahashi, T.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

Takayanagi, A.

M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.

Tanji, A.

Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of a low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings 12th International AIC Congress (2013), pp. 363–366.

Tian, Q.

Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.

Tkaczyk, T. S.

Treado, P. J.

Tsuchida, M.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.

M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.

Valero, E.

M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

Valero, E. M.

Vanrell, M.

Vazquez-Corral, J.

Wallace, R. W.

Wolfe, P. J.

K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890 (2008).

Wong, M. A.

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm,” J. Roy. Stat. Soc. C-App 28, 100–108 (1979).

Wu, W.

G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Yamaguchi, M.

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20, 7173–7183 (2012).
[CrossRef]

Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of a low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings 12th International AIC Congress (2013), pp. 363–366.

Yamato, J.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
[CrossRef]

Zaraga, F.

G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

Zhou, X.

Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Color Res. Appl. (2)

A. Hård and L. Sivik, “NCS- natural color system: a Swedish standard for color notation,” Color Res. Appl. 6, 129–138 (1981).
[CrossRef]

G. Sharma, W. Wu, and E. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Cytometry (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry 69, 735–747 (2006).
[CrossRef]

IEEE Electron. Device Lett. (1)

A. Longoni, F. Zaraga, G. Langfelder, and L. Bombelli, “The transverse field detector (TFD): a novel color-sensitive CMOS device,” IEEE Electron. Device Lett. 29, 1306–1308 (2008).

IEEE Signal Process. Mag. (1)

B. Gunturk, J. Glotzbach, Y. Altunbasak, R. Schafer, and R. Mersereau, “Demosaicking: color filter array interpolation,” IEEE Signal Process. Mag. 22, 44–54 (2005).

IEEE T. Image Process. (1)

L. Miao, H. Qi, R. Ramanath, and W. Snyder, “Binary tree-based generic demosaicking algorithms for multispectral filter arrays,” IEEE T. Image Process. 15, 3550–3558 (2006).

IEEE Trans. Electron Dev. (3)

G. Langfelder, “CMOS pixels directly sensitive to both visible and near-infrared radiation,” IEEE Trans. Electron Dev. 60, 1695–1700 (2013).

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron Dev. 44, 1689–1698 (1997).

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Dev. 56, 2563–2569 (2009).

IEEE Trans. Image Process. (2)

K. Hirakawa and P. J. Wolfe, “Spatio-spectral color filter array design for optimal image recovery,” IEEE Trans. Image Process. 17, 1876–1890 (2008).

J. Brauers, N. Schulte, and T. Aach, “Multispectral filter-wheel cameras: geometric distortion model and compensation algorithms,” IEEE Trans. Image Process. 17, 2368–2380 (2008).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

J. Roy. Stat. Soc. C-App (1)

J. A. Hartigan and M. A. Wong, “Algorithm as 136: a k-means clustering algorithm,” J. Roy. Stat. Soc. C-App 28, 100–108 (1979).

Opt. Eng. (3)

I. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid-crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52, 090901 (2013).
[CrossRef]

Opt. Express (2)

Proc. SPIE (3)

G. Langfelder, T. Malzbender, A. Longoni, and F. Zaraga, “A device and an algorithm for the separation of visible and near infrared signals in a monolithic silicon sensor,” Proc. SPIE 7882, 788207 (2011).

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).

G. Langfelder, A. Longoni, and F. Zaraga, “Implementation of a multi-spectral color imaging device without color filter array,” Proc. SPIE 7876, 787607 (2011).

Other (21)

M. Martínez-Domingo, E. Valero, J. Hernández-Andrés, and G. Langfelder, “Spectral reflectance estimation from transverse field detectors responses,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology), 2012, pp. 378–383.

M. Tsuchida, T. Takahashi, K. Ito, T. Kawanishi, J. Yamato, and T. Aoki, “A stereo one-shot multi-band camera system for accurate color reproduction,” in ACM SIGGRAPH 2010 Posters (ACM, 2010), p. 66.

M. Tsuchida, T. Kawanishi, K. Kashino, and J. Yamato, “A stereo nine-band camera for accurate color and spectrum reproduction,” in ACM SIGGRAPH 2012 Posters (ACM, 2012), p. 18.

J. Y. Hardeberg, Acquisition and Reproduction of Color Images: Colorimetric and Multispectral Approaches (Universal-Publishers, 2001).

C. I. Chang, Hyperspectral Data Exploitation: Theory and Applications (Wiley, 2007).

H. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (Wiley, 2007).

A. Rodríguez, J. L. Nieves, E. Valero, E. Garrote, J. Hernández-Andrés, and J. Romero, “Modified fuzzy c-means applied to a Bragg-grating-based spectral imager for material clustering,” in IS&T/SPIE Electronic Imaging (International Society for Optics and Photonics, 2012), p. 83000J.

J. Brauers and T. Aach, “A color filter array-based multispectral camera,” in Workshop Farbbildverarbeitung (Ilmenau, 2006).

M. Hashimoto and J. Kishimoto, “Two-shot type 6-band still image capturing system using commercial digital camera and custom color filter,” in Conference on Color in Graphics, Imaging, and Vision (Society for Imaging Science and Technology, 2008), pp. 538–541.

M. Tsuchida, A. Takayanagi, Y. Sakaguchi, and R. Mukai, “Estimation of spectral reflectance from six-band images based on partial least-squares regression,” in Proceedings 12th International AIC Congress, 2013, pp. 1785–1788.

I. Chatzis, V. Kappatos, and E. Dermatas, “Filter selection for multi-spectral image acquisition using the feature vector analysis methods,” in Intelligent Production Machines and Systems: 2nd I* PROMS Virtual Conference (Elsevier Science, 2007).

Y. Lu, I. Cohen, X. Zhou, and Q. Tian, “Feature selection using principal feature analysis,” in Proceedings of the 15th International Conference on Multimedia (ACM, 2007), pp. 301–304.

Natural Color System (NCS). Scandinavian Colour Institute of Stockholm, Sweden, (1979).

Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of a low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings 12th International AIC Congress (2013), pp. 363–366.

A. Lin and F. Imai, “Efficient spectral imaging based on imaging systems with scene adaptation using tunable color pixels,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2011), pp. 332–338.

F. H. Imai, “Computational spectral imaging based on adaptive spectral imaging,” in Computational Color Imaging (Springer, 2013), pp. 35–52.

P. M. Hubel, “Foveon technology and the changing landscape of digital cameras,” in Color and Imaging Conference (Society for Imaging Science and Technology, 2005), pp. 314–317.

V. Heikkinen, “Kernel methods for estimation and classification of data from spectral imaging,” Ph.D. dissertation (Faculty of Forestry and Natural Sciences, University of Eastern Finland, 2011).

M. Martínez-Domingo, E. Valero, V. Heikkinen, and G. Langfelder, “Design of a multispectral system based on transverse field detectors,” in Proceedings 12th International AIC Congress, 2013, pp. 371–374.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Conference on Colour in Graphics, Image and Vision (Society for Imaging Science and Technology, 2002), pp. 492–496.

http://www.andovercorp.com/Web_store/Standard_BP/Std_BP_General.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schemes for the 11 system configurations studied. Filter layer with blue caption, sensing layer with red caption. The number in each pixel determines the number of channels retrieved in one shot out of it.

Fig. 2.
Fig. 2.

Normalized spectral sensitivities of all systems versus wavelength in nanometers. Normalization was done just for displaying.

Fig. 3.
Fig. 3.

Color and spectral error metrics for all systems. The bars show the mean value and the lines the standard deviation centered on the mean.

Tables (3)

Tables Icon

Table 1. System Characteristics

Tables Icon

Table 2. Means and Standard Deviations of Polynomial Degree (d) and Regularization Term (λr) Kernel Parameters Values a

Tables Icon

Table 3. Results for All Systems Studied (Mean and STD)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

PSDi(λ)=Ri(λ)·SPFD65(λ).
Iik=q·Alight·λPSDi(λ)·Qek(λ)dλ,
Voki=Iik·TintCf,
σT=K·TCf,
σDCS=q·TintCf2·(Iik+Jd·Atot),
σtot=σT2+σDCS2,
Vηoki=Voki+ησ,
ρki=round[Vηoki·(2B1)Vdd],

Metrics