Abstract

A wire grid polarizer comprised of chromium oxide is designed for a micro-lithography system using an ArF excimer laser. Optical properties for some material candidates are calculated using a rigorous coupled-wave analysis. The chromium oxide wire grid polarizer with a 90 nm period is fabricated by a double-patterning technique using KrF lithography and dry etching. The extinction ratio of the grating is greater than 20 dB (1001) at a wavelength of 193 nm. Differences between the calculated and experimental results are discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresist,” Proc. SPIE 4691, 11–24 (2002).
  2. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886–891 (1960).
    [CrossRef]
  3. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274–276 (2009).
    [CrossRef]
  4. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
    [CrossRef]
  5. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
    [CrossRef]
  6. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
    [CrossRef]
  7. J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
    [CrossRef]
  8. T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51, 3224–3227 (2012).
    [CrossRef]
  9. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
    [CrossRef]
  10. B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
    [CrossRef]
  11. G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
    [CrossRef]
  12. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
    [CrossRef]
  13. T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
    [CrossRef]
  14. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  15. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  17. http://www.rsoftdesign.com .
  18. T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
    [CrossRef]
  19. A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
    [CrossRef]

2012

2010

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

2009

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34, 274–276 (2009).
[CrossRef]

2007

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

A. Lehmuskero, M. Kuittinen, and P. Vahimaa, “Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness,” Opt. Express 15, 10744–10752 (2007).
[CrossRef]

2006

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

2005

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

2003

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

2002

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresist,” Proc. SPIE 4691, 11–24 (2002).

2001

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

1999

B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

1997

1996

1995

1986

1960

Adamson, D. H.

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

Ahn, S.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Bird, G. R.

Buonanno, M.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Cashmore, J.

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresist,” Proc. SPIE 4691, 11–24 (2002).

Chaikin, P. M.

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

Chen, L.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Doumuki, T.

Ebihara, T.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Fuchs, H. J.

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Gaylord, T. K.

Gotschy, W.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Grann, E. B.

Hangyo, M.

He, J.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Helgert, M.

Käsebier, T.

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Kley, E. B.

T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51, 3224–3227 (2012).
[CrossRef]

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Kren, J. R.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Kuittinen, M.

Lamprecht, B.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Lehmuskero, A.

Leitner, A.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Levenson, M. D.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Li, L.

Li, W.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

M’saad, H.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Matsumoto, S.

Moharam, M. G.

Oga, T.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Papalia, J. M.

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Parrish, M.

Pommet, D. A.

Register, R. A.

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

Saito, M.

Schider, G.

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

Schmidt, H.

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Schnabel, B.

B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Shen, M.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Smith, B. W.

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresist,” Proc. SPIE 4691, 11–24 (2002).

Tai, S.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

Takano, K.

Tamada, H.

Tünnermann, A.

T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51, 3224–3227 (2012).
[CrossRef]

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Vahimaa, P.

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

Watanabe, W.

Weber, T.

T. Weber, T. Käsebier, M. Helgert, E. B. Kley, and A. Tünnermann, “Tungsten wire grid polarizer for applications in the DUV spectral range,” Appl. Opt. 51, 3224–3227 (2012).
[CrossRef]

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Wyrowski, F.

B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Yamada, I.

Yamaguchi, T.

Yeh, W.

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007).
[CrossRef]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40  nm line/78  nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006).
[CrossRef]

J. Appl. Phys.

J. M. Papalia, D. H. Adamson, P. M. Chaikin, and R. A. Register, “Silicon nanowire polarizers for far ultraviolet (sub-200  nm) applications: modeling and fabrication,” J. Appl. Phys. 107, 084305 (2010).
[CrossRef]

G. Schider, J. R. Kren, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90, 3825–3830 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nanotechnology

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50  nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[CrossRef]

Opt. Eng.

B. Schnabel, E. B. Kley, and F. Wyrowski, “Study on polarizing visible light by sub-wavelength-period metal-stripe gratings,” Opt. Eng. 38, 220–226 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. Weber, H. J. Fuchs, H. Schmidt, E. B. Kley, and A. Tünnermann, “Wire-grid polarizer for the UV spectral region,” Proc. SPIE 7205, 720504 (2009).
[CrossRef]

B. W. Smith and J. Cashmore, “Challenges in high NA, polarization, and photoresist,” Proc. SPIE 4691, 11–24 (2002).

T. Ebihara, M. D. Levenson, W. Li, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M’saad, “Beyond k1=0.25 lithography: 70  nm L/S patterning using KrF scanners,” Proc. SPIE 5256, 985–994 (2003).
[CrossRef]

Other

http://www.rsoftdesign.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic illustration of a one direction subwavelength grating with its geometrical parameters.

Fig. 2.
Fig. 2.

Extinction ratio of the RCWA results versus the duty cycle and height of the (a) chromium oxide, (b) aluminum oxide, (c) tantalum oxide, (d) titanium oxide, and (e) aluminum gratings at a wavelength of 193 nm. The white and black areas indicate more than 50 dB and less than 0 dB, respectively.

Fig. 3.
Fig. 3.

RCWA results for the transmission of TM-polarized light versus the duty cycle and height of the (a) chromium oxide, (b) aluminum oxide, (c) tantalum oxide, (d) titanium oxide, and (e) aluminum gratings at a wavelength of 193 nm. The white and black areas indicate more than 50 dB and less than 0 dB, respectively.

Fig. 4.
Fig. 4.

Simulation results of the (a) extinction ratio versus duty cycle and (b) TM transmittance versus the duty cycle for a subwavelength grating with a 90 nm pitch and 120 nm height for chromium oxide, aluminum oxide, tantalum oxide, titanium oxide, and aluminum.

Fig. 5.
Fig. 5.

Amplitude of the RCWA results near field distribution of TE-polarized light for the (a) chromium oxide, (b) aluminum oxide, (c) tantalum oxide, (d) titanium oxide, and (e) aluminum gratings at a wavelength of 193 nm.

Fig. 6.
Fig. 6.

Fabrication process for a 90 nm pitch grating using the double-patterning technique.

Fig. 7.
Fig. 7.

SEM images of the fabricated chromium oxide gratings with a duty cycle of (a) 0.417 and (b) 0.378.

Fig. 8.
Fig. 8.

Schematic illustration of the measurement system.

Fig. 9.
Fig. 9.

Simulation results of the influence of the mask alignment shift and second etching error on the optical characteristics of a chromium oxide grating. (a) Extinction ratio. (b) TM transmission.

Fig. 10.
Fig. 10.

Simulation results of the influence of the silica mask on the optical characteristics of a chromium oxide grating. (a) Extinction ratio. (b) TM transmission.

Fig. 11.
Fig. 11.

Amplitude of the RCWA results near field distribution of (a) TE-polarized light and (b) TM-polarized light from the fabricated chromium oxide grating at a wavelength of 193 nm.

Tables (2)

Tables Icon

Table 1. Optical Constants Measured Using a Spectroscopic Ellipsometer

Tables Icon

Table 2. Simulation Results of the Extinction Ratio and Transmittance of TM-Polarized Light for the Gratings with a 90 nm Period, 120 nm Height, and 0.3 Duty Cycle

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nairsinθin+nsubsinθm=mλp,
p<λnsub.

Metrics