Abstract

It is quite possible to detect the strain of a sample based on a chirped fiber grating (CFG) sensor, which has a wider bandwidth of light signal than a fiber Bragg grating. Usually, environmental factors play negative roles in the process of intensity demodulation. A drift-eliminating method of CFG intensity demodulation has been created and tested in our lab. Three CFG sensors were involved in this research. Two of them with close wavelength bands connected in series were used as a strain sensing unit; the third one was used as a referencing grating working within the reflective wavelength spectrum of the other two. It is shown that the signal ratio of the sensing unit and the referencing grating is a linear function of the loading strain. The linearity is as high as 99.79%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
    [CrossRef]
  2. M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
    [CrossRef]
  3. K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
    [CrossRef]
  4. A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
    [CrossRef]
  5. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316 (1994).
    [CrossRef]
  6. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
    [CrossRef]
  7. C. M. De Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
    [CrossRef]
  8. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]

2012

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

2008

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

2006

M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1994

1993

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[CrossRef]

1990

C. M. De Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[CrossRef]

Albert, J.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bennion, I.

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

Bilodeau, F.

Bricheno, T.

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

Byron, K. C.

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

Crocombe, A. D.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

De Sterke, C. M.

C. M. De Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[CrossRef]

Feng, Q.

M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gower, M. R. L.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Hill, K. O.

Johnson, D. C.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kitagawa, T.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, R. J.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Liu, H.

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

Madhav, G.

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

Malo, B.

Ogin, S. L.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Poladian, L.

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Sanderson, A. R.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Sipe, J. E.

C. M. De Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[CrossRef]

Song, M.

M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
[CrossRef]

Sugden, K.

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

Takiguchi, K.

Thériault, S.

Venu, A.

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

Xie, F.

M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
[CrossRef]

Yang, Y.

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

Compos. Sci. Technol.

A. R. Sanderson, S. L. Ogin, A. D. Crocombe, M. R. L. Gower, and R. J. Lee, “Use of a surface-mounted chirped fibre Bragg grating sensor to monitor delamination growth in a double-cantilever beam test,” Compos. Sci. Technol. 72, 1121–1126 (2012).
[CrossRef]

Electron. Lett.

K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29, 1659–1660 (1993).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

C. M. De Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990).
[CrossRef]

Phys. Rev. E

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[CrossRef]

Proc. SPIE

A. Venu, G. Madhav, Y. Yang, and H. Liu, “Current development in fiber Bragg grating sensors and their applications,” Proc. SPIE 6932, 69320D (2008).
[CrossRef]

M. Song, F. Xie, and Q. Feng, “Study of the fiber grin lens tunable Fabry–Perot filter and its application,” Proc. SPIE 6150, 61502J (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Reflection spectrum of CFG. (a) Simulated CFG spectrum. (b) CFG measured by spectrogram.

Fig. 2.
Fig. 2.

Sensing situation of two CFGs. (a) Structure of a CFG sensor. (b) Operation of CFG sensor.

Fig. 3.
Fig. 3.

Optical path of the drift eliminating method.

Fig. 4.
Fig. 4.

Experimental device.

Fig. 5.
Fig. 5.

Test result of load and light power without interference. (a) Experimental data curve. (b) Series of two CFGs measured by spectrogram.

Fig. 6.
Fig. 6.

Signal output from PD1 and PD2.

Fig. 7.
Fig. 7.

Normalization curves of light power of two photoelectric diodes.

Fig. 8.
Fig. 8.

Curves of output of (a) PD1 and (b) PD2, with attenuating light intensity and loading step by step.

Fig. 9.
Fig. 9.

Ratio of output of two photoelectric diodes, with loading and light intensity interference.

Tables (1)

Tables Icon

Table 1. Test Results of Load and Light Power without Interference

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δλ/λ=(1Pe)ε+(α+ξ)ΔT,
Δλmax/Δλmin=1+(λmaxλmin)/λmin.
I0=+kρR(λ)dλ,
I0=kρ+R(λ)dλ=kρSs,
I1=14kρSs.
I2=18kρSc,
r=I1I2=2SsSc.
ΔSs=R0Δd.
Δr=2ΔSsSc=2R0ScΔd.
εx=6LFh2DE,
{Δλuλu=(1Pe)εx+ΔTu(α+ξ)Δλdλd=(1Pe)εx+ΔTd(α+ξ),
ΔdλdΔλddλuλd=2(1Pe)εx.
Δd=12(1Pe)λuLFh2DE.
Δr=2R0ScΔd=24(1pe)λuLR0h2DEScF.
y=(yMinValue)/(MaxValueMinValue),

Metrics