Abstract

The relationship between projector–camera baseline and the phase variation direction of fringe patterns is one of the essential characteristics in a three-dimensional (3D) profilometry system, although it has been ignored. This paper indicates that a 3D profilometry system will be most sensitive to object depth change when the phase variation direction of the fringe patterns is parallel to the baseline, which is analyzed in systems based on both the triangulation and stereovision principles. An efficient method is proposed to achieve the most sensitivity by projecting a set of fringe patterns of different phase variation directions. Experimental results demonstrate our analysis and the proposed determination method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Park and M. Chang, “Reverse engineering with a structured light system,” Comput. Ind. Eng. 57, 1377–1384 (2009).
    [CrossRef]
  2. L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
    [CrossRef]
  3. H. Guo and P. Huang, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
    [CrossRef]
  4. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
    [CrossRef]
  5. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [CrossRef]
  6. Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
    [CrossRef]
  7. K. Xue, Y. Li, S. Lu, and L. Chen, “Three-dimensional shape measurement using improved binary spatio-temporal encoded illumination and voting algorithm,” Appl. Opt. 50, 5508–5512 (2011).
    [CrossRef]
  8. B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
    [CrossRef]
  9. S. Fang, L. Meng, L. Wang, P. Yang, and M. Komori, “Quality-guided phase unwrapping algorithm based on reliability evaluation,” Appl. Opt. 50, 5446–5452 (2011).
    [CrossRef]
  10. R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
    [CrossRef]
  11. M. Vo, Z. Wang, T. Hoang, and D. Nguyen, “Flexible calibration technique for fringe-projection-based three-dimensional imaging,” Opt. Lett. 35, 3192–3194 (2010).
    [CrossRef]
  12. H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
    [CrossRef]
  13. S. Cui and X. Zhu, “A generalized reference-plane-based calibration method in optical triangular profilometry,” Opt. Express 17, 20735–20746 (2009).
    [CrossRef]
  14. Y. Wang and S. Zhang, “Optimal fringe angle selection for digital fringe projection technique,” Appl. Opt. 52, 7094–7098 (2013).
    [CrossRef]
  15. Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
    [CrossRef]
  16. S. Ma, R. Zhu, C. Quan, L. Chen, C. J. Tay, and B. Li, “Flexible structured-light-based three-dimensional profile reconstruction method considering lens projection-imaging distortion,” Appl. Opt. 51, 2419–2428 (2012).
    [CrossRef]
  17. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
    [CrossRef]
  18. T. Hoang, B. Pan, D. Nguyen, and Z. Wang, “Generic gamma correction for accuracy enhancement in fringe-projection profilometry,” Opt. Lett. 35, 1992–1994 (2010).
    [CrossRef]

2013

2012

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

S. Ma, R. Zhu, C. Quan, L. Chen, C. J. Tay, and B. Li, “Flexible structured-light-based three-dimensional profile reconstruction method considering lens projection-imaging distortion,” Appl. Opt. 51, 2419–2428 (2012).
[CrossRef]

2011

2010

2009

S. Cui and X. Zhu, “A generalized reference-plane-based calibration method in optical triangular profilometry,” Opt. Express 17, 20735–20746 (2009).
[CrossRef]

S. C. Park and M. Chang, “Reverse engineering with a structured light system,” Comput. Ind. Eng. 57, 1377–1384 (2009).
[CrossRef]

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
[CrossRef]

2008

R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
[CrossRef]

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

1983

Asundi, A.

Chang, M.

S. C. Park and M. Chang, “Reverse engineering with a structured light system,” Comput. Ind. Eng. 57, 1377–1384 (2009).
[CrossRef]

Chen, L.

Chen, Y.

R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
[CrossRef]

Cheng, S.

R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
[CrossRef]

Cheng, X.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

Cui, H.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

Cui, S.

Dai, N.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

Fang, S.

Finke, H.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

Gernat, T.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

Guo, H.

H. Guo and P. Huang, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[CrossRef]

Hao, Q.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
[CrossRef]

Hassebrook, L. G.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
[CrossRef]

Hoang, T.

Huang, L.

Huang, P.

H. Guo and P. Huang, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[CrossRef]

Hublin, J.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

Kemao, Q.

Komori, M.

Lau, D. L.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
[CrossRef]

Li, B.

Li, Y.

Li, Z.

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Liao, W.

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

Liu, K.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
[CrossRef]

Lu, S.

Ma, S.

Meng, L.

Mutoh, K.

Nguyen, D.

Niven, L.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

Pan, B.

Park, S. C.

S. C. Park and M. Chang, “Reverse engineering with a structured light system,” Comput. Ind. Eng. 57, 1377–1384 (2009).
[CrossRef]

Quan, C.

Shi, Y.

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Steele, T. E.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

Takeda, M.

Tay, C. J.

Vo, M.

Wang, C.

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Wang, L.

Wang, Y.

Y. Wang and S. Zhang, “Optimal fringe angle selection for digital fringe projection technique,” Appl. Opt. 52, 7094–7098 (2013).
[CrossRef]

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Gamma model and its analysis for phase measuring profilometry,” J. Opt. Soc. Am. A 27, 553–562 (2010).
[CrossRef]

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

Wang, Z.

Xue, K.

Yang, P.

Yang, R.

R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
[CrossRef]

Zhang, S.

Y. Wang and S. Zhang, “Optimal fringe angle selection for digital fringe projection technique,” Appl. Opt. 52, 7094–7098 (2013).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

Zhu, R.

Zhu, X.

Appl. Opt.

Comput. Ind. Eng.

S. C. Park and M. Chang, “Reverse engineering with a structured light system,” Comput. Ind. Eng. 57, 1377–1384 (2009).
[CrossRef]

IEEE Trans. Image Process.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3D structured light illumination,” IEEE Trans. Image Process. 20, 3001–3013 (2011).
[CrossRef]

J. Archaeol. Sci.

L. Niven, T. E. Steele, H. Finke, T. Gernat, and J. Hublin, “Virtual skeletons: using a structured light scanner to create a 3D faunal comparative collection,” J. Archaeol. Sci. 36, 2018–2023 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Eng.

Z. Li, Y. Shi, C. Wang, and Y. Wang, “Accurate calibration method for a structured light system,” Opt. Eng. 47, 053604 (2008).
[CrossRef]

H. Guo and P. Huang, “Face recognition based on fringe pattern analysis,” Opt. Eng. 49, 037201 (2010).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementation of a binocular structured light system,” Opt. Lasers Eng. 46, 373–379 (2008).
[CrossRef]

Opt. Lett.

Optik

H. Cui, W. Liao, N. Dai, and X. Cheng, “A flexible and rapid micro-adjustment algorithm for structured light 3D measurement system with camera-projector,” Optik 123, 109–116 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

3D profilometry system model based on the triangulation principle.

Fig. 2.
Fig. 2.

Vertical fringe pattern (left) and oblique fringe pattern (right).

Fig. 3.
Fig. 3.

3D profilometry system model based on the stereovision principle.

Fig. 4.
Fig. 4.

Calibration result of the 3D profilometry system.

Fig. 5.
Fig. 5.

Simulation result of the relationship between normalized image coordinate change and fringe angle.

Fig. 6.
Fig. 6.

Experimental results of the relationship between phase change and fringe angle.

Fig. 7.
Fig. 7.

Curve fitting result.

Fig. 8.
Fig. 8.

Experimental results of sculpture. (a) The captured image when the system has optimal sensitivity. (b) The retrieved phase map of (a). (c) Reconstructed 3D shape of (a). (d) The captured image when the system has the worst sensitivity. (e) The retrieved phase map of (d). (f) Reconstructed 3D shape of (d).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

g0(x,y)=B(x,y)+A(x,y)cos[ω0x+Δφ(x,y)],
Δφ(x,y)=φAφB=ω0AB¯.
H(x,y)AB¯=LH(x,y)D,
H(x,y)=Δϕ(x,y)·LΔϕ(x,y)+ω0D.
Δϕ(x,y)=ω0D·H(x,y)LH(x,y).
g0(x,y)=B(x,y)+A(x,y)cos[ωxx+Δφ(x,y)].
g0(x,y)=B(x,y)+A(x,y)cos[ωxx+ωyy+Δφ(x,y)],
Δφ(x,y)=Δφ(x)=ωxD·H(x,y)LH(x,y)=ω0cosθ·D·H(x,y)LH(x,y).
{Qc=R·Qw+TQp=M·Qw+P,
R=[r1r2r3r4r5r6r7r8r9],M=[m1m2m3m4m5m6m7m8m9]
{X=fcx·xc/zcY=fcy·yc/zcΦ=fpx·xp/zp,
X=fcxr1xw+r2yw+r3zw+t1r7xw+r8yw+r9zw+t3,
Y=fcyr4xw+r5yw+r6zw+t2r7xw+r8yw+r9zw+t3,
Φ=fpxm1xw+m2yw+m3zw+p1m7xw+m8yw+m9zw+p3.
xw=a1zw+a0,
yw=b1zw+b0,
a1=(k2r9r6)(k1r8r2)(k1r9r3)(k2r8r5)(k1r7r1)(k2r8r5)(k2r7r4)(k1r8r2),
a0=(k2t3t2)(k1r8r2)(k1t3t1)(k2r8r5)(k1r7r1)(k2r8r5)(k2r7r4)(k1r8r2),
b1=(k2r9r6)(k1r7r1)(k1r9r3)(k2r7r4)(k1r8r2)(k2r7r4)(k2r8r5)(k1r7r1),
b0=(k2t3t2)(k1r7r1)(k1t3t1)(k2r7r4)(k1r8r2)(k2r7r4)(k2r8r5)(k1r7r1).
Φ=fpx(a1m1+b1m2+m3)zw+(a0m1+b0m2+p1)(a1m7+b1m8+m9)zw+(a0m7+b0m8+p3).
Φ=fpxn1zw+n0s1zw+s0.
ΔΦ=Φ1Φ2=fpxn0s1n1s0s12·zw2zw1(zw1+s0s1)(zw2+s0s1).
[MP]=[cosθsinθ0sinθcosθ0001][MP],
M=[m1cosθm4sinθm2cosθm5sinθm3cosθm6sinθm1sinθ+m4cosθm2sinθ+m5cosθm3sinθm6cosθm7m8m9].
P=[p1cosθp2sinθp1sinθ+p2cosθp3]

Metrics