Abstract

We design photonic quasi-crystal fibers (PQFs) of six-, eight-, ten-, and twelve-folds for determining the optimized efficiency as well as the bandwidth of second harmonic generation (SHG). We report a maximum SHG relative efficiency of 941.36%W1cm2 for a twelve-fold PQF of 2 μm pitch. The detailed numerical results reveal that, while the relative efficiency increases appreciably, the phase-matching bandwidth increases marginally, as and when the number of folds increases. As the primary interest of this work is to enhance the relative efficiency, we focus our analysis with a twelve-fold PQF for which the efficiency turns a maximum. In line with the practical feasibility of poling, we keep the pitch at 7 μm and report an optimized relative efficiency and phase-matching bandwidth as 95.28%W1cm2 and 50.51 nm.cm, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription