Abstract

We design photonic quasi-crystal fibers (PQFs) of six-, eight-, ten-, and twelve-folds for determining the optimized efficiency as well as the bandwidth of second harmonic generation (SHG). We report a maximum SHG relative efficiency of 941.36%W1cm2 for a twelve-fold PQF of 2 μm pitch. The detailed numerical results reveal that, while the relative efficiency increases appreciably, the phase-matching bandwidth increases marginally, as and when the number of folds increases. As the primary interest of this work is to enhance the relative efficiency, we focus our analysis with a twelve-fold PQF for which the efficiency turns a maximum. In line with the practical feasibility of poling, we keep the pitch at 7 μm and report an optimized relative efficiency and phase-matching bandwidth as 95.28%W1cm2 and 50.51 nm.cm, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
    [CrossRef]
  2. K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
    [CrossRef]
  3. P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal Chem. 83, 3224–3231 (2011).
    [CrossRef]
  4. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090–1092 (2004).
    [CrossRef]
  5. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  6. M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
    [CrossRef]
  7. M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  8. W. Margulis and U. Österberg, “Second-harmonic generation in optical glass fibers,” J. Opt. Soc. Am. B 5, 312–316 (1988).
    [CrossRef]
  9. A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998).
    [CrossRef]
  10. P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).
    [CrossRef]
  11. Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
    [CrossRef]
  12. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
    [CrossRef]
  13. I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
    [CrossRef]
  14. T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
    [CrossRef]
  15. D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
    [CrossRef]
  16. M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
    [CrossRef]
  17. J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
    [CrossRef]
  18. I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
    [CrossRef]
  19. A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
    [CrossRef]
  20. H. Ren, A. Nazarkin, J. Nold, and P. S. Russell, “Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers,” Opt. Express 16, 17052–17059 (2008).
    [CrossRef]
  21. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef]
  22. Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
    [CrossRef]
  23. S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
    [CrossRef]
  24. S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012).
    [CrossRef]
  25. S. Kim, C. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13227 (2007).
    [CrossRef]
  26. S. Kim and C. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17, 15885–15890 (2009).
    [CrossRef]
  27. H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010).
    [CrossRef]
  28. R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
    [CrossRef]
  29. S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20, 853–856 (2003).
    [CrossRef]
  30. J. Liu, Z. Fan, H. Xiao, W. Zhang, C. Guan, and L. Yuan, “Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals,” Appl. Opt. 50, 4868–4872 (2011).
    [CrossRef]
  31. J. E. S. Socolar, “Weak matching rules for quasicrystals,” Commun. Math. Phys. 129, 599–619 (1990).
    [CrossRef]
  32. M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993).
    [CrossRef]
  33. H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
    [CrossRef]
  34. J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826–835 (2005).
    [CrossRef]
  35. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
    [CrossRef]
  36. J. H. Simmons and K. S. Potter, Optical Materials (Academic, 2000).
  37. R. T. Bise and D. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6.

2013 (1)

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

2012 (2)

S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012).
[CrossRef]

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

2011 (3)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal Chem. 83, 3224–3231 (2011).
[CrossRef]

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[CrossRef]

J. Liu, Z. Fan, H. Xiao, W. Zhang, C. Guan, and L. Yuan, “Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals,” Appl. Opt. 50, 4868–4872 (2011).
[CrossRef]

2010 (1)

2009 (2)

S. Kim and C. Kee, “Dispersion properties of dual-core photonic-quasicrystal fiber,” Opt. Express 17, 15885–15890 (2009).
[CrossRef]

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

2008 (3)

2007 (2)

J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
[CrossRef]

S. Kim, C. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13227 (2007).
[CrossRef]

2006 (3)

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
[CrossRef]

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
[CrossRef]

2005 (3)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826–835 (2005).
[CrossRef]

2004 (1)

2003 (2)

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

S. Ashihara, T. Shimura, and K. Kuroda, “Group-velocity matched second-harmonic generation in tilted quasi-phase-matched gratings,” J. Opt. Soc. Am. B 20, 853–856 (2003).
[CrossRef]

2001 (2)

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

2000 (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

1998 (1)

A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998).
[CrossRef]

1997 (1)

1995 (1)

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

1993 (2)

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1990 (1)

J. E. S. Socolar, “Weak matching rules for quasicrystals,” Commun. Math. Phys. 129, 599–619 (1990).
[CrossRef]

1988 (1)

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Agrawal, A.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

Arie, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Arraf, A.

A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998).
[CrossRef]

Ashihara, S.

Asobe, M.

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

Assanto, G.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Bache, M.

J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
[CrossRef]

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
[CrossRef]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Bang, O.

Belardi, W.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Bétourné, A.

Bhattacharjee, R.

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

Bise, R. T.

R. T. Bise and D. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6.

Bouwmans, G.

Broderick, N. G. R.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

Busacca, A.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Campagnola, P.

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal Chem. 83, 3224–3231 (2011).
[CrossRef]

Chen, Z.

Cheng, B.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Chi, E. O.

K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
[CrossRef]

Chigrin, D. N.

Cooper, M.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Dou, J.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Douay, M.

Faccio, D.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Fan, Z.

Fejer, M. M.

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Godbout, N.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Grappe, B.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Gratan, K. T. V.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

Guan, C.

Halasyamani, P. S.

K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

Henley, C. L.

M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993).
[CrossRef]

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Houé, M.

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Hu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Jiang, Y.

Jundt, H. D.

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kawata, S.

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Kazansky, P. G.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).
[CrossRef]

Kee, C.

Kejalakshmy, N.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

Kim, S.

Koynov, K.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Kuroda, K.

Lacroix, S.

Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Lægsgaard, J.

J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
[CrossRef]

M. Bache, H. Nielsen, J. Lægsgaard, and O. Bang, “Tuning quadratic nonlinear photonic crystal fibers for zero group-velocity mismatch,” Opt. Lett. 31, 1612–1614 (2006).
[CrossRef]

Lavrinenko, A. V.

Lee, J.

Li, J.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Liu, J.

Ma, B.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Margulis, W.

Martijn de Sterke, C.

A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998).
[CrossRef]

Monro, T. M.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

Nazarkin, A.

Nielsen, H.

Nold, J.

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

Ok, K. M.

K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
[CrossRef]

Österberg, U.

Oxborrow, M.

M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993).
[CrossRef]

Pannell, C. N.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Potter, K. S.

J. H. Simmons and K. S. Potter, Optical Materials (Academic, 2000).

Pruneri, V.

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

P. G. Kazansky and V. Pruneri, “Electric-field poling of quasi-phase-matched optical fibers,” J. Opt. Soc. Am. B 14, 3170–3179 (1997).
[CrossRef]

Quiquempois, Y.

A. Bétourné, Y. Quiquempois, G. Bouwmans, and M. Douay, “Design of a photonic crystal fiber for phase-matched frequency doubling or tripling,” Opt. Express 16, 14255–14262 (2008).
[CrossRef]

Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Rahman, B. M. A.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

Raina, J. P.

S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012).
[CrossRef]

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[CrossRef]

Ramesh Babu, P.

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

Ren, H.

Richardson, D. J.

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

Roberts, P. J.

J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
[CrossRef]

Romero-Vivas, J.

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

Russell, P. S.

Senthilnathan, K.

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

Sheik-Bahae, M.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Sheng, Y.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Shimura, T.

Simmons, J. H.

J. H. Simmons and K. S. Potter, Optical Materials (Academic, 2000).

Sivabalan, S.

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012).
[CrossRef]

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[CrossRef]

Socolar, J. E. S.

J. E. S. Socolar, “Weak matching rules for quasicrystals,” Commun. Math. Phys. 129, 599–619 (1990).
[CrossRef]

Song, J.

H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010).
[CrossRef]

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Sotomayor Torres, C. M.

Stegeman, G.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Stryland, E. V.

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Sun, H.

H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010).
[CrossRef]

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Suzuki, H.

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

Tomita, I.

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

Tomov, I.

Townsend, P. D.

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Trevor, D.

R. T. Bise and D. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6.

Verma, P.

Wang, Y.

Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090–1092 (2004).
[CrossRef]

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Wijeratne, I. N. M.

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

Xiao, H.

Xu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Yoshikuni, Y.

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

Yuan, L.

Yumoto, J.

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

Zaccaria, R. P.

H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010).
[CrossRef]

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Zhang, D.

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Zhang, W.

Zhao, H.

H. Zhao, R. P. Zaccaria, P. Verma, J. Song, and H. Sun, “Validity of the V parameter for photonic quasi-crystal fibers,” Opt. Lett. 35, 1064–1066 (2010).
[CrossRef]

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Anal Chem. (1)

P. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal Chem. 83, 3224–3231 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Sheng, K. Koynov, J. Dou, B. Ma, J. Li, and D. Zhang, “Collinear second harmonic generations in a nonlinear photonic quasicrystal,” Appl. Phys. Lett. 92, 201113 (2008).
[CrossRef]

G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, “All-optical switching devices based on large nonlinear phase shifts from second harmonic generation,” Appl. Phys. Lett. 62, 1323–1325 (1993).
[CrossRef]

Chem. Soc. Rev. (1)

K. M. Ok, E. O. Chi, and P. S. Halasyamani, “Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity,” Chem. Soc. Rev. 35, 710–717 (2006).
[CrossRef]

Commun. Math. Phys. (1)

J. E. S. Socolar, “Weak matching rules for quasicrystals,” Commun. Math. Phys. 129, 599–619 (1990).
[CrossRef]

Electron. Lett. (1)

D. Faccio, A. Busacca, W. Belardi, V. Pruneri, P. G. Kazansky, T. M. Monro, D. J. Richardson, B. Grappe, M. Cooper, and C. N. Pannell, “Demonstration of thermal poling in holey fibres,” Electron. Lett. 37, 107–108 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Arraf and C. Martijn de Sterke, “Large-bandwidth frequency conversion in high-NA step index optical fibers,” IEEE J. Quantum Electron. 34, 660–665 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, H. D. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

IEEE Photon. J. (2)

I. N. M. Wijeratne, N. Kejalakshmy, A. Agrawal, B. M. A. Rahman, and K. T. V. Gratan, “Numerical analysis of second harmonic generation in soft glass equiangular spiral photonic crystal fibers,” IEEE Photon. J. 4, 357–368 (2012).
[CrossRef]

S. Sivabalan and J. P. Raina, “Large pitch photonic quasi-crystal fiber amplifier,” IEEE Photon. J. 4, 943–951 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Sivabalan and J. P. Raina, “High normal dispersion and large mode area photonic quasi-crystal fiber Stretcher,” IEEE Photon. Technol. Lett. 23, 1139–1141 (2011).
[CrossRef]

T. M. Monro, V. Pruneri, N. G. R. Broderick, D. Faccio, P. G. Kazansky, and D. J. Richardson, “Broad-band second-harmonic generation in holey optical fibers,” IEEE Photon. Technol. Lett. 13, 981–983 (2001).
[CrossRef]

J. Appl. Phys. (1)

I. Tomita, M. Asobe, H. Suzuki, J. Yumoto, and Y. Yoshikuni, “Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal,” J. Appl. Phys. 100, 023120 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D (1)

M. Houé and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. (1)

R. Bhattacharjee, K. Senthilnathan, S. Sivabalan, and P. Ramesh Babu, “Exploring a photonic quasi-crystal fiber for enhancing the efficiency of second harmonic generation: modeling and analysis,” Opt. Mater. 35, 2132–2137 (2013).
[CrossRef]

Opt. Quantum Electron. (1)

J. Lægsgaard, P. J. Roberts, and M. Bache, “Tailoring the dispersion properties of photonic crystal fibers,” Opt. Quantum Electron. 39, 995–1008 (2007).
[CrossRef]

Phys. Rev. A (1)

Y. Quiquempois, N. Godbout, and S. Lacroix, “Thermal poling of thin silica glass films: design rules for optical fibers and waveguides,” Phys. Rev. A 71, 063809 (2005).
[CrossRef]

Phys. Rev. B (2)

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasiperiodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

M. Oxborrow and C. L. Henley, “Random square-triangle tilings: a model for twelvefold-symmetric quasicrystals,” Phys. Rev. B 48, 6966–6998 (1993).
[CrossRef]

Phys. Rev. B. (1)

H. Zhao, R. P. Zaccaria, J. Song, S. Kawata, and H. Sun, “Photonic quasicrystals exhibit zero-transmission regions due to translational arrangement of constituent parts,” Phys. Rev. B. 79, 115118 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef]

Other (2)

J. H. Simmons and K. S. Potter, Optical Materials (Academic, 2000).

R. T. Bise and D. Trevor, “Solgel-derived microstructured fibers: fabrication and characterization,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OWL6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Scheme of angular distribution of air holes in the cladding of a PQF.

Fig. 2.
Fig. 2.

Geometrical structure of PQFs with (a) six-fold, (b) eight-fold, (c) ten-fold, and (d) twelve-fold. Here gray color region signifies silica material and white circles signify air holes.

Fig. 3.
Fig. 3.

Confinement of fundamental modes (a)–(d) and second harmonic modes (e)–(h) in six-, eight-, ten-, and twelve-folds of PQF.

Fig. 4.
Fig. 4.

Variation of overlap integral factor against pitch for a six-fold PQF. Inset, variation of normalized overlap integral with respect to pitch.

Fig. 5.
Fig. 5.

Variation of wave-vector mismatch and normalized overlap area with respect to pitch for different folds of PQF. Inset, variation of normalized overlap area of different PQF folds with respect to pitch.

Fig. 6.
Fig. 6.

Variation of relative efficiency of SHG with pitch for different folds of PQF.

Fig. 7.
Fig. 7.

Variation of dneff/dλ with wavelength for various pitches. Inset, variation of dneff/dλ with wavelength for a pitch range of 4–15 μm.

Fig. 8.
Fig. 8.

Variation of GVM parameter and phase matching bandwidth against pitch for the twelve-fold PQF.

Fig. 9.
Fig. 9.

Variation of relative efficiency of SHG and QPM period with respect to pitch for the twelve-fold PQF.

Tables (1)

Tables Icon

Table 1. SHG Parameters of Different PQF Folds

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=P2ωPω=Pωl2(deff)2Aovlsinc2(Δβl2)8π2λf2nf2nshϵ0c.

Metrics