Abstract

Films containing a layer of Ag nanoparticles embedded in silicon dioxide were produced by RF magnetron sputtering. Optical transmittance measurements at several angles of incidence (from normal to 75°) revealed two surface plasmon resonance (SPR) peaks, which depend on electric field direction: one in the ultraviolet and another red-shifted from the dilute Ag/SiO2 system resonance at 410 nm. In order to investigate the origin of this anisotropic behavior, the structural properties were determined by transmission electron microscopy, revealing the bidimensional plane distribution of Ag nanoparticles with nearly spherical shape as well as the filling factor of metal in the composite. A simple model linked to these experimental parameters allowed description of the most relevant features of the SPR positions, which, depending on the field direction, were distinctly affected by the coupling of oscillations between close nanoparticles, as described by a modified Drude–Lorentz dielectric function introduced into the Maxwell–Garnett relation. This approach allowed prediction of the resonance for light at 75° incidence from the SPR position for light at normal incidence, in good agreement with experimental observation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 223.
  2. M. Held, O. Stenzel, S. Wilbrandt, N. Kaiser, and A. Tünnermann, “Manufacture and characterization of optical coatings with incorporated copper island films,” Appl. Opt. 51, 4436–4447 (2012).
    [CrossRef]
  3. K. Lee and M. A. El-sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [CrossRef]
  4. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
    [CrossRef]
  5. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
    [CrossRef]
  6. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
    [CrossRef]
  7. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
    [CrossRef]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  9. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc., A 203, 385–420 (1904).
    [CrossRef]
  10. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Philos. Trans. R. Soc., A 205, 237–288 (1906).
  11. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
    [CrossRef]
  12. O. Granqvist and C. G. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
    [CrossRef]
  13. D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2nd ed. (Imperial College, 2004).
  14. R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
    [CrossRef]
  15. B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
    [CrossRef]
  16. S. Yoo and Q.-H. Park, “Effective permittivity for resonant plasmonic nanoparticle systems via dressed polarizability,” Opt. Express 20, 16480–16489 (2012).
    [CrossRef]
  17. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), p. 532.
  18. U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik 224, 307–323 (1969).
  19. T. Menegotto, M. B. Pereira, R. R. B. Correia, and F. Horowitz, “Simple modeling of plasmon resonances in Ag/SiO2 nanocomposite monolayers,” Appl. Opt. 50, C27–C30 (2011).
    [CrossRef]
  20. A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).
  21. R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
    [CrossRef]
  22. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
    [CrossRef]
  23. H. A. Macleod, Thin-film Optical Filters, 3rd ed. (CRC Press, 2001).
  24. U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
    [CrossRef]

2012 (3)

2011 (1)

2010 (2)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

2009 (2)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

2006 (1)

K. Lee and M. A. El-sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

2004 (1)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).

2003 (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

1999 (1)

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

1996 (1)

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[CrossRef]

1991 (1)

R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

1983 (1)

B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
[CrossRef]

1977 (1)

O. Granqvist and C. G. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

1972 (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

1969 (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik 224, 307–323 (1969).

1906 (1)

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Philos. Trans. R. Soc., A 205, 237–288 (1906).

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc., A 203, 385–420 (1904).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Barrera, R. G.

R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Bedeaux, D.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2nd ed. (Imperial College, 2004).

Bour, G.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

Boyd, R. W.

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Correia, R. R. B.

del Castillo-Mussot, M.

R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

El-sayed, M. A.

K. Lee and M. A. El-sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Fragstein, C. V.

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik 224, 307–323 (1969).

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Philos. Trans. R. Soc., A 205, 237–288 (1906).

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc., A 203, 385–420 (1904).
[CrossRef]

Gartz, M.

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

Gehr, R. J.

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[CrossRef]

Granqvist, O.

O. Granqvist and C. G. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Green, M. A.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[CrossRef]

Held, M.

Hilger, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Horowitz, F.

Hunderi, C. G.

O. Granqvist and C. G. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Kaiser, N.

Kinbara, A.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

Kreibig, U.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik 224, 307–323 (1969).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), p. 532.

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Lee, K.

K. Lee and M. A. El-sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Liebsch, A.

B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-film Optical Filters, 3rd ed. (CRC Press, 2001).

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 223.

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Menegotto, T.

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Monsivais, G.

R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

Park, Q.-H.

Pereira, M. B.

Persson, B. N. J.

B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
[CrossRef]

Pillai, S.

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[CrossRef]

Pinchuk, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Simon, J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Stenzel, O.

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Tünnermann, A.

Vlieger, J.

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2nd ed. (Imperial College, 2004).

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), p. 532.

Wilbrandt, S.

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

Yoo, S.

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

Chem. Mater. (1)

R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996).
[CrossRef]

J. Appl. Phys. (1)

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
[CrossRef]

J. Phys. Chem. B (1)

K. Lee and M. A. El-sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Nat. Photonics (1)

M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003).
[CrossRef]

Opt. Express (1)

Philos. Trans. R. Soc., A (2)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc., A 203, 385–420 (1904).
[CrossRef]

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions—II,” Philos. Trans. R. Soc., A 205, 237–288 (1906).

Phys. Rev. B (3)

O. Granqvist and C. G. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

R. G. Barrera, M. del Castillo-Mussot, and G. Monsivais, “Optical properties of two-dimensional disordered systems on a substrate,” Phys. Rev. B 43, 13819–13826 (1991).
[CrossRef]

B. N. J. Persson and A. Liebsch, “Optical properties of two-dimensional systems of randomly distributed particles,” Phys. Rev. B 28, 4247–4254 (1983).
[CrossRef]

Phys. Status Solidi A (1)

U. Kreibig, G. Bour, A. Hilger, and M. Gartz, “Optical properties of cluster-matter: influences of interfaces,” Phys. Status Solidi A 175, 351–366 (1999).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Surf. Colloid Sci. (1)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Colloid Sci. 557, 269–280 (2004).

Thin Solid Films (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Effect of the dipole interaction between island particles on the optical properties of an aggregated silver film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

Zeitschrift für Physik (1)

U. Kreibig and C. V. Fragstein, “The limitation of electron mean free path in small silver particles,” Zeitschrift für Physik 224, 307–323 (1969).

Other (4)

D. Bedeaux and J. Vlieger, Optical Properties of Surfaces, 2nd ed. (Imperial College, 2004).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 223.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), p. 532.

H. A. Macleod, Thin-film Optical Filters, 3rd ed. (CRC Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Lorentz sphere applied to composite media. Explanation of each component can be found in the text.

Fig. 2.
Fig. 2.

Cross-section sketches of an infinite bidimensional system of particles representing: (a) polarization perpendicular and (b) polarization parallel to the plane of particles. Schematic springs represent interactions between charges within each nanoparticle (in white) and interactions between charges in neighbor nanoparticles (in gray).

Fig. 3.
Fig. 3.

Experimental transmittance spectra of the nanoparticle thin film on glass, relative to that of the uncoated substrate, for (a) s-polarized light and (b) p-polarized light. The transmittance of the bare substrate at the same angle of incidence and polarization direction was used as reference. The schematic profile at the inset presents the orientation of the electric field with respect to the plane of incidence.

Fig. 4.
Fig. 4.

Plane-view micrograph of the nanoparticle thin film.

Fig. 5.
Fig. 5.

Relative transmittance data and model fitting for normal incidence (solid line, circles) and 75° tilted incidence for p-polarized light (dashed line, triangles).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Γ(R)=Γ+AvFR,
εeff=εh[1+3f(εiεh)(εi+2εh)f(εiεh)],
ωSPR=ωp3,
ωSPR,2=ωSPR2(1+9.03(Ra)3);
ωSPR,2=ωSPR2(19.032(Ra)3),
me2rt2+meΓ(R)rt+(kI±kC)r=eE0eiωt,
ωc2=B2ωSPR2(Ra)3,
ωSPR=ωp1+2εh.
εi,(ω)=1+fcωp2(2ωc2ω2)iΓ(R)ω,
εi,(ω)=1+fcωp2(ωc2ω2)iΓ(R)ω,
εeff,j=εh[1+3f(εi,jεh)(εi,j+2εh)f(εi,jεh)],
εi,j(ω)=1+fcωp2(j(1)jωc2ω2)iΓ(R)ω,j=1,2.
kc=vFRωIm{A},

Metrics