Abstract

To compare the light-scattering effectiveness of surface-textured solar cells of various design parameters such as density, diameter, refractive index, and location, this study used a new parameter, optical path length gain (OPLG), that is more sensitive than Haze. By modeling two-dimensional disordered textures as a structure that comprises many randomly distributed, small, spherical scatterers, ray-tracing simulations of surface-textured thin-film silicon solar cells were performed. The simulation results suggest that: (1) the optimal scatterer diameter for hydrogenated amorphous silicon (a-Si:H) solar cells is 50nm, producing an average OPLG of 3.5; and (2) the optimal scatterer diameter for a-Si:H/μc-Si:H (hydrogenated microcrystalline silicon) tandem cells is 75nm, producing an average OPLG of 3.4 and an increase in the bandwidth of the absorption spectrum of 14.5%.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
Comparison and optimization of randomly textured surfaces in thin-film solar cells

C. Rockstuhl, S. Fahr, K. Bittkau, T. Beckers, R. Carius, F.-J. Haug, T. Söderström, C. Ballif, and F. Lederer
Opt. Express 18(S3) A335-A342 (2010)

Approaching the Lambertian limit in randomly textured thin-film solar cells

Stephan Fahr, Thomas Kirchartz, Carsten Rockstuhl, and Falk Lederer
Opt. Express 19(S4) A865-A874 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription