Abstract

To compare the light-scattering effectiveness of surface-textured solar cells of various design parameters such as density, diameter, refractive index, and location, this study used a new parameter, optical path length gain (OPLG), that is more sensitive than Haze. By modeling two-dimensional disordered textures as a structure that comprises many randomly distributed, small, spherical scatterers, ray-tracing simulations of surface-textured thin-film silicon solar cells were performed. The simulation results suggest that: (1) the optimal scatterer diameter for hydrogenated amorphous silicon (a-Si:H) solar cells is 50nm, producing an average OPLG of 3.5; and (2) the optimal scatterer diameter for a-Si:H/μc-Si:H (hydrogenated microcrystalline silicon) tandem cells is 75nm, producing an average OPLG of 3.4 and an increase in the bandwidth of the absorption spectrum of 14.5%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
    [CrossRef]
  2. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
    [CrossRef]
  3. X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
    [CrossRef]
  4. S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
    [CrossRef]
  5. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007).
    [CrossRef]
  6. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express 17, 23058–23065 (2009).
    [CrossRef]
  7. A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
    [CrossRef]
  8. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20, 1849–1855 (2012).
    [CrossRef]
  9. M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
    [CrossRef]
  10. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).
  11. S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
    [CrossRef]
  12. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  13. L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
    [CrossRef]
  14. K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
    [CrossRef]
  15. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
    [CrossRef]

2013 (1)

M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[CrossRef]

2012 (4)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express 20, 1849–1855 (2012).
[CrossRef]

2011 (2)

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

2010 (2)

X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
[CrossRef]

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

2009 (1)

2007 (1)

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007).
[CrossRef]

2006 (1)

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
[CrossRef]

2004 (1)

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

1999 (1)

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Borg, H.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

Byun, S. Y.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Byun, S.-J.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Cabarrocas, P. R. i.

M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[CrossRef]

Campa, A.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Chan, Y. C.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Cho, K.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Dewan, R.

Fischer, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Foldyna, M.

M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[CrossRef]

Fuyuki, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
[CrossRef]

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007).
[CrossRef]

Hongsingthong, A.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Hsu, C.-H.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Hua, X.-S.

X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
[CrossRef]

Isabella, O.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Jäger, K.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Kasashima, S.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Kim, J. W.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Kim, W. M.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Knipp, D.

Konagai, M.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Krajangsang, T.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Krc, J.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Kurokawa, Y.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Lam, Y. W.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Lee, J.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Lee, T. S.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Lien, S.-Y.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Lin, S. H.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Lin, Y.-S.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Marinkovic, M.

Menon, R.

Muller, J.

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Noriega, R.

Park, Y. K.

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

Peeters, P.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Phadke, S.

Rech, B.

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Riboli, F.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

Salleo, A.

Springer, J.

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007).
[CrossRef]

Topic, M.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Uraoka, Y.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

van Erven, R.

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

van Swaaij, R. A. C. M. M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

Vanecek, M.

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Vynck, K.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

Wada, H.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Wang, C.-C.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Wang, H.-W.

X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
[CrossRef]

Wang, P.

Webb, D. P.

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Wiersma, D. S.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

Wuu, D.-S.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Yagi, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
[CrossRef]

Yang, C.-H.

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Yu, L.

M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[CrossRef]

Yunaz, I. A.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Zeman, M.

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Zhang, L.

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Zhang, Y.-J.

X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91, 061116 (2007).
[CrossRef]

J. Appl. Phys. (1)

K. Jäger, M. Fischer, R. A. C. M. M. van Swaaij, and M. Zeman, “A scattering model for nano-textured interfaces and its application in optoelectrical simulations of thin-film silicon solar cells,” J. Appl. Phys. 111, 083108 (2012).
[CrossRef]

J. Electron. Mater. (1)

S. H. Lin, Y. C. Chan, D. P. Webb, and Y. W. Lam, “Optical characterization of hydrogenated amorphous silicon thin films deposited at high rate,” J. Electron. Mater. 28, 1452–1456 (1999).
[CrossRef]

Mater. Chem. Phys. (1)

S.-Y. Lien, C.-H. Yang, C.-H. Hsu, Y.-S. Lin, C.-C. Wang, and D.-S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Mater. Chem. Phys. 133, 63–68 (2012).
[CrossRef]

Nat. Mater. (1)

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11, 1017–1022 (2012).

Opt. Express (2)

Phys. Status Solidi (1)

L. Zhang, I. A. Yunaz, S. Kasashima, H. Wada, A. Hongsingthong, T. Krajangsang, Y. Kurokawa, and M. Konagai, “Light management of a-Si:H solar cells using textured zinc oxide with adjustable haze values,” Phys. Status Solidi C8, 2998–3001 (2011).
[CrossRef]

Prog. Photovoltaics (1)

A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010).
[CrossRef]

Sol. Energy (1)

J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77, 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (4)

M. Foldyna, L. Yu, and P. R. i. Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[CrossRef]

S.-J. Byun, S. Y. Byun, J. Lee, J. W. Kim, T. S. Lee, W. M. Kim, Y. K. Park, and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Sol. Energy Mater. Sol. Cells 95, 408–411 (2011).
[CrossRef]

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90, 2647–2656 (2006).
[CrossRef]

X.-S. Hua, Y.-J. Zhang, and H.-W. Wang, “The effect of texture unit shape on silicon surface on the absorption properties,” Sol. Energy Mater. Sol. Cells 94, 258–262 (2010).
[CrossRef]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagrams of a-Si:H solar cells with various texturing designs: (a) scatterers were of material_H, immersed in a-Si:H and located at the interface between the TCO and a-Si:H layers; (b) scatterers were of material_L, immersed in TCO and located at the interface between the glass and TCO layers; (c) scatterers were of material_L, immersed in a-Si:H and located at the interface between the TCO and a-Si:H layers.

Fig. 2.
Fig. 2.

(a) Angular distribution of diffusely transmitted light for four scatterer densities (8.9%, 17.8%, 35.6%, and 71.2% in terms of area coverage percentage), using Fig. 1(a) layer structure, a 700 nm light wavelength and a 50 nm scatterer diameter. (b) Magnified plot of the bottom part of (a). (c) Magnified plot of the left part of (a). (d) OPLG versus the area coverage percentage of scatterers.

Fig. 3.
Fig. 3.

OPLG versus scatterer diameter of Fig. 1(a) layer structure at four incident wavelengths: 550, 700, 900, and 1200 nm. The secondary x axis shows the product of the scatterer circumference and refractive index of the immersed material, allowing the numbers to be compared to the incident wavelength in air.

Fig. 4.
Fig. 4.

OPLG in TCO layer versus scatterer diameter of Fig. 1(b)’s layer structure at four incident wavelengths: 550, 700, 900, and 1200 nm. The secondary x axis shows the product of the scatterer circumference and refractive index of the immersed material, allowing the numbers to be compared to the incident wavelength in air.

Fig. 5.
Fig. 5.

OPLG versus scatterer diameter of Fig. 1(c) layer structure at four incident wavelengths: 550, 700, 900, and 1200 nm. The secondary x axis shows the product of the scatterer circumference and refractive index of the immersed material, allowing the numbers to be compared to the incident wavelength in air.

Fig. 6.
Fig. 6.

EQE versus incident wavelength of a-Si:H/μc-Si:H tandem solar cells with and without scatterers, using Fig. 1(c) layer structure with a μc-Si:H bottom cell where the i-layer thicknesses were 200 nm and 3 μm for a-Si:H and μc-Si:H, respectively.

Tables (1)

Tables Icon

Table 1. Performance Characteristics of the a-Si:H/μc-Si:H Tandem Solar Cells with and without Scatterers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OPLG=090I(θ)cosθdθ/090I(θ)dθ.

Metrics