Abstract

A distributed optical fiber sensor is introduced which is capable of quantifying multiple magnetic fields along a 1 km sensing fiber with a spatial resolution of 1 m. The operation of the proposed sensor is based on measuring the magnetorestrictive induced strain of a nickel wire attached to an optical fiber. The strain coupled to the optical fiber was detected by measuring the strain-induced phase variation between the backscattered Rayleigh light from two segments of the sensing fiber. A magnetic field intensity resolution of 0.3 G over a bandwidth of 50–5000 Hz was demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [CrossRef]
  2. L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).
  3. S. C. Rashleigh, “Magnetic-field sensing with a single-mode fiber,” Opt. Lett. 6, 19–21 (1981).
    [CrossRef]
  4. A. Yariv and H. V. Winsor, “Proposal for detection of magnetic fields through magnetostrictive perturbation of optical fibers,” Opt. Lett. 5, 87–89 (1980).
    [CrossRef]
  5. P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
    [CrossRef]
  6. M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.
  7. A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
    [CrossRef]
  8. R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE J. Quantum Electron. 18, 1601–1603 (1982).
    [CrossRef]
  9. C. B. Cameron, R. M. Keolin, and S. L. Garrett, “A symmetrical analog demodulator for optical fiber interferometric sensors,” in Proceedings of the 34th Midwest Symposium on Circuits and Systems (IEEE, 1991), Vol. 2, pp. 666–671.

2013 (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

2012 (1)

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).

1998 (1)

P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
[CrossRef]

1982 (1)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE J. Quantum Electron. 18, 1601–1603 (1982).
[CrossRef]

1981 (2)

1980 (1)

Araujo, F. M.

P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
[CrossRef]

Belal, M.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Cameron, C. B.

C. B. Cameron, R. M. Keolin, and S. L. Garrett, “A symmetrical analog demodulator for optical fiber interferometric sensors,” in Proceedings of the 34th Midwest Symposium on Circuits and Systems (IEEE, 1991), Vol. 2, pp. 666–671.

Cavaleiro, P. M.

P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
[CrossRef]

Galtarossa, A.

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).

Garrett, S. L.

C. B. Cameron, R. M. Keolin, and S. L. Garrett, “A symmetrical analog demodulator for optical fiber interferometric sensors,” in Proceedings of the 34th Midwest Symposium on Circuits and Systems (IEEE, 1991), Vol. 2, pp. 666–671.

Keolin, R. M.

C. B. Cameron, R. M. Keolin, and S. L. Garrett, “A symmetrical analog demodulator for optical fiber interferometric sensors,” in Proceedings of the 34th Midwest Symposium on Circuits and Systems (IEEE, 1991), Vol. 2, pp. 666–671.

Li, M.

M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.

Lv, F.

M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.

Masoudi, A.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Newson, T. P.

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Palmieri, L.

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).

Priest, R. G.

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE J. Quantum Electron. 18, 1601–1603 (1982).
[CrossRef]

Rashleigh, S. C.

Ribeiro, A. B. L.

P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
[CrossRef]

Rogers, A. J.

Winsor, H. V.

Xiang, Z.

M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.

Yariv, A.

Zhou, J.

M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.

Appl. Opt. (1)

Electron. Lett. (1)

P. M. Cavaleiro, F. M. Araujo, and A. B. L. Ribeiro, “Metal-coated fiber Bragg grating sensor for electric current metering,” Electron. Lett. 34, 1133–1135 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. G. Priest, “Analysis of fiber interferometer utilizing 3×3 fiber coupler,” IEEE J. Quantum Electron. 18, 1601–1603 (1982).
[CrossRef]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belal, and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR,” Meas. Sci. Technol. 24, 085204 (2013).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

L. Palmieri and A. Galtarossa, “Distributed fiber optic sensor for mapping of intense magnetic fields based on polarization sensitive reflectometry,” Proc. SPIE 8351, 835131 (2012).

Other (2)

C. B. Cameron, R. M. Keolin, and S. L. Garrett, “A symmetrical analog demodulator for optical fiber interferometric sensors,” in Proceedings of the 34th Midwest Symposium on Circuits and Systems (IEEE, 1991), Vol. 2, pp. 666–671.

M. Li, J. Zhou, Z. Xiang, and F. Lv, “Giant magnetostrictive magnetic fields sensor based on dual fiber Bragg gratings,” in IEEE Proceedings of Networking, Sensing and Control (IEEE, 2005), pp. 490–495.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Effect of magnetic field on the phase of the backscattered light from two separate segments of an optical fiber which is attached to the nickel wire showing the phase of the backscattered light in the presence and absence of a magnetic field.

Fig. 2.
Fig. 2.

Experimental setup. EDFA, erbium-doped fiber amplifier; PD, photodetector; IS, isolator; V1 and V2, outputs of test coils.

Fig. 3.
Fig. 3.

Magnetic field source element used in the experimental setup to generate AC magnetic field.

Fig. 4.
Fig. 4.

Schematic of the circuit used to drive the magnetic coils.

Fig. 5.
Fig. 5.

(a) 3D plot of FFT of the phase-detector output for the data points between 700 and 850 m. (b) 2D view of the 3D plot at the location of the peak.

Fig. 6.
Fig. 6.

Response of the sensing fiber to 1200 Hz sinusoidal magnetic field for a range of different intensities. The solid line shows the DOFMS output while the dashed line represents the results obtained using MZI.

Fig. 7.
Fig. 7.

Response of the sensing fiber to sinusoidal magnetic fields with a fixed magnitude and a range of frequencies spanning from 50 to 5000 Hz. The solid line shows the magnetic-field-induced strain measured using MZI while the circles show the DOFMS output.

Fig. 8.
Fig. 8.

Differentiate and cross-multiplying demodulator frequency response to an input signal with 1.5π phase shift at sampling rate of 10 μs (solid blue line) and 20 μs (red dashed line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I1=I0[M+Ncos(Δϕ)],I2=I0[M+Ncos(Δϕ+2π3)],I3=I0[M+Ncos(Δϕ2π3)],
Φ=3Δϕ=3(2πλΔ)=23πϵMλB,
S=4π×fB(max)×Nfringe,

Metrics