Abstract

This paper describes the validation process of mode-locked lasers in the “tunable lasers in photometry” (TULIP) setup at Physikalisch-Technische Bundesanstalt (PTB) regarding spectral irradiance responsivity calibrations. Validation has been carried out in the visible spectral range, 400–700 nm, with two different photometer heads and in the long wavelength range, 690–780 nm, with a filtered radiometer. A comparison of the results against those from two different validated measurement setups has been carried out for validation. For the visible spectral range, the comparison is conducted against the data obtained from a lamp-based monochromator setup for spectral irradiance responsivity calibrations and against the photometric values (integral quantity) measured at the photometric bench setup of PTB. For the long wavelength range, comparisons against results from two different lamp-based monochromator measurement setups were made. Additionally, the effect of different radiation bandwidths on interference oscillations has been determined for a filter radiometer without a diffuser. A procedure for the determination of the optimum bandwidth of the setup for the respective measurement device is presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Gentile and C. L. Cromer, “Mode-locked lasers for high-accuracy radiometry,” Metrologia 32, 585–587 (1995).
    [CrossRef]
  2. W. S. Hartree, P. R. Haycocks, and N. P. Fox, “The use of a mode-locked laser for ultraviolet radiometry,” Metrologia 35, 339–343 (1998).
    [CrossRef]
  3. M. Schuster, S. Nevas, A. Sperling, and S. Völker, “Spectral calibration of radiometric detectors using tunable laser sources,” Appl. Opt. 51, 1950–1961 (2012).
    [CrossRef]
  4. A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.
  5. T. Fey, I. Kröger, and S. Winter, “Non-linearity effects of a detector due to pulsed radiation,” in Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012), pp. 3697–3699.
  6. V. E. Anderson, N. P. Fox, and D. H. Nettleton, “Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry,” Appl. Opt. 31, 536–545 (1992).
    [CrossRef]
  7. Bureau International des Poids et Measures, “Guide to the expression of uncertainty in measurement (GUM),” JCGM 100:1995, http://www.bipm.org/en/publications/guides/gum.html .
  8. “Evaluation of measurement data—supplement 1 to the ‘Guide to the expression of uncertainty in measurement’—propagation of distributions using a Monte Carlo method,” JCGM 101:2008, http://www.bipm.org/en/publications/guides/gum.html .
  9. CIE 018.2-1983, The Basis of Physical Photometry, 2nd ed. (CIE, 1983).
  10. S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup at PTB,” in Proceedings of 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.
  11. R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
    [CrossRef]
  12. R. Kacker and R. Kessel, “Assessing differences between results determined according to the Guide to the Expression of Uncertainties in Measurement,” J. Res. Natl. Inst. Stand. Technol. 115, 453–459 (2010).
    [CrossRef]
  13. W. Erb and G. Sauter, “PTB network for realization and maintenance of the candela,” Metrologia 34, 115–124 (1997).
    [CrossRef]
  14. T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
    [CrossRef]
  15. P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
    [CrossRef]
  16. J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
    [CrossRef]

2012 (1)

2010 (2)

R. Kacker and R. Kessel, “Assessing differences between results determined according to the Guide to the Expression of Uncertainties in Measurement,” J. Res. Natl. Inst. Stand. Technol. 115, 453–459 (2010).
[CrossRef]

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

2009 (1)

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

2002 (1)

R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
[CrossRef]

1998 (2)

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

W. S. Hartree, P. R. Haycocks, and N. P. Fox, “The use of a mode-locked laser for ultraviolet radiometry,” Metrologia 35, 339–343 (1998).
[CrossRef]

1997 (1)

W. Erb and G. Sauter, “PTB network for realization and maintenance of the candela,” Metrologia 34, 115–124 (1997).
[CrossRef]

1995 (1)

T. R. Gentile and C. L. Cromer, “Mode-locked lasers for high-accuracy radiometry,” Metrologia 32, 585–587 (1995).
[CrossRef]

1992 (1)

Anderson, V. E.

Cromer, C. L.

T. R. Gentile and C. L. Cromer, “Mode-locked lasers for high-accuracy radiometry,” Metrologia 32, 585–587 (1995).
[CrossRef]

Datla, R.

R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
[CrossRef]

Eltmannn, M.

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

Erb, W.

W. Erb and G. Sauter, “PTB network for realization and maintenance of the candela,” Metrologia 34, 115–124 (1997).
[CrossRef]

Fey, T.

T. Fey, I. Kröger, and S. Winter, “Non-linearity effects of a detector due to pulsed radiation,” in Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012), pp. 3697–3699.

Fox, N. P.

Galal Yousef, S.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Gentile, T. R.

T. R. Gentile and C. L. Cromer, “Mode-locked lasers for high-accuracy radiometry,” Metrologia 32, 585–587 (1995).
[CrossRef]

Hartmann, J.

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Hartree, W. S.

W. S. Hartree, P. R. Haycocks, and N. P. Fox, “The use of a mode-locked laser for ultraviolet radiometry,” Metrologia 35, 339–343 (1998).
[CrossRef]

Haycocks, P. R.

W. S. Hartree, P. R. Haycocks, and N. P. Fox, “The use of a mode-locked laser for ultraviolet radiometry,” Metrologia 35, 339–343 (1998).
[CrossRef]

Holland, J.

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Ikonen, E.

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

Kacker, R.

R. Kacker and R. Kessel, “Assessing differences between results determined according to the Guide to the Expression of Uncertainties in Measurement,” J. Res. Natl. Inst. Stand. Technol. 115, 453–459 (2010).
[CrossRef]

R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
[CrossRef]

Kärhä, P.

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

Kessel, R.

R. Kacker and R. Kessel, “Assessing differences between results determined according to the Guide to the Expression of Uncertainties in Measurement,” J. Res. Natl. Inst. Stand. Technol. 115, 453–459 (2010).
[CrossRef]

Kröger, I.

T. Fey, I. Kröger, and S. Winter, “Non-linearity effects of a detector due to pulsed radiation,” in Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012), pp. 3697–3699.

Lindner, D.

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

Manninen, P.

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

Manoocheri, F.

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

Meindl, P.

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Metzdorf, J.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Möller, W.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Nettleton, D. H.

Nevas, S.

Parr, A.

R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
[CrossRef]

Poikonen, T.

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

Sauter, G.

W. Erb and G. Sauter, “PTB network for realization and maintenance of the candela,” Metrologia 34, 115–124 (1997).
[CrossRef]

Schuster, M.

M. Schuster, S. Nevas, A. Sperling, and S. Völker, “Spectral calibration of radiometric detectors using tunable laser sources,” Appl. Opt. 51, 1950–1961 (2012).
[CrossRef]

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

Sperfeld, P.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Sperling, A.

M. Schuster, S. Nevas, A. Sperling, and S. Völker, “Spectral calibration of radiometric detectors using tunable laser sources,” Appl. Opt. 51, 1950–1961 (2012).
[CrossRef]

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup at PTB,” in Proceedings of 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

Stock, K. D.

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

Taubert, D.

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Völker, S.

Werner, L.

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Winter, S.

T. Fey, I. Kröger, and S. Winter, “Non-linearity effects of a detector due to pulsed radiation,” in Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012), pp. 3697–3699.

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup at PTB,” in Proceedings of 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

Zschenker, A.

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

Appl. Opt. (2)

J. Res. Natl. Inst. Stand. Technol. (1)

R. Kacker and R. Kessel, “Assessing differences between results determined according to the Guide to the Expression of Uncertainties in Measurement,” J. Res. Natl. Inst. Stand. Technol. 115, 453–459 (2010).
[CrossRef]

MAPAN J. Metrol. Soc. India (1)

J. Hartmann, J. Holland, P. Meindl, D. Taubert, and L. Werner, “Traceable radiometric calibration of semiconductor detectors and their application for thermodynamic temperature measurement,” MAPAN J. Metrol. Soc. India 25, 3–10 (2010).
[CrossRef]

Metrologia (6)

R. Kacker, R. Datla, and A. Parr, “Combined result and associated uncertainty from interlaboratory evaluations based on the ISO Guide,” Metrologia 39, 279–293 (2002).
[CrossRef]

W. Erb and G. Sauter, “PTB network for realization and maintenance of the candela,” Metrologia 34, 115–124 (1997).
[CrossRef]

T. Poikonen, P. Kärhä, P. Manninen, F. Manoocheri, and E. Ikonen, “Uncertainty analysis of photometer quality factor f’1,” Metrologia 46, 75–80 (2009).
[CrossRef]

P. Sperfeld, J. Metzdorf, S. Galal Yousef, K. D. Stock, and W. Möller, “Improvement and extension of the black-body-based spectral irradiance scale,” Metrologia 35, 267–271 (1998).
[CrossRef]

T. R. Gentile and C. L. Cromer, “Mode-locked lasers for high-accuracy radiometry,” Metrologia 32, 585–587 (1995).
[CrossRef]

W. S. Hartree, P. R. Haycocks, and N. P. Fox, “The use of a mode-locked laser for ultraviolet radiometry,” Metrologia 35, 339–343 (1998).
[CrossRef]

Other (6)

A. Zschenker, D. Lindner, M. Schuster, M. Eltmannn, and A. Sperling, “Non-linearity measurements on imaging luminance measurement devices (ILMDs),” in Proceedings of Lux Junior 2011/10. Internationales Forum für den Lichttechnischen Nachwuchs (Technische Universität Ilmenau, 2011), pp. 54–55.

T. Fey, I. Kröger, and S. Winter, “Non-linearity effects of a detector due to pulsed radiation,” in Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition (WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012), pp. 3697–3699.

Bureau International des Poids et Measures, “Guide to the expression of uncertainty in measurement (GUM),” JCGM 100:1995, http://www.bipm.org/en/publications/guides/gum.html .

“Evaluation of measurement data—supplement 1 to the ‘Guide to the expression of uncertainty in measurement’—propagation of distributions using a Monte Carlo method,” JCGM 101:2008, http://www.bipm.org/en/publications/guides/gum.html .

CIE 018.2-1983, The Basis of Physical Photometry, 2nd ed. (CIE, 1983).

S. Winter and A. Sperling, “Uncertainty analysis of a photometer calibration at the DSR setup at PTB,” in Proceedings of 2nd Expert Symposium on Measurement Uncertainty (CIE, 2006), pp. 139–142.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic sketch of the TULIP setup for the spectral characterization and calibration of irradiance and radiance responsivity in the wavelength range from 235 to 1600 nm (extendable to 3000 nm).

Fig. 2.
Fig. 2.

Algorithm for the estimation of the optimum bandwidth of the short-pulse laser system used in TULIP.

Fig. 3.
Fig. 3.

Irradiance responsivity of a filter radiometer without a diffuser measured with a continuous wave laser.

Fig. 4.
Fig. 4.

Irradiance responsivity of a filter radiometer without a diffuser measured with a short-pulse laser system with a bandwidth of 1.05 nm (red) and 0.2 nm (blue), respectively. The bandwidth of 1.05 nm is the best compromise between high spectral resolution and interference free data points. Measurement results with 0.2 nm bandwidth clearly show an aliasing on the interference structure.

Fig. 5.
Fig. 5.

Irradiance responsivity of a filter radiometer without a diffuser measured with a radiation bandwidth of 2.1 nm (green), 3.15 nm (blue), and 4.9 nm (red) and respective uncertainties (bars) including an uncertainty component due to the bandpass function.

Fig. 6.
Fig. 6.

(a) Absolute spectral irradiance responsivity of a scotopic photometer head measured at TULIP (light blue) and at Setup 1 (dark blue) (left axis) with respective relative measurement uncertainties of the two measurements (right axis). (b) EN ratio of the measurements at Setup 1 (reference) and TULIP.

Fig. 7.
Fig. 7.

(a) Absolute spectral irradiance responsivity of a photopic photometer head measured at TULIP (light green) and Setup 1 (dark green) (left axis) with respective relative measurement uncertainties of the two measurements (right axis). (b) EN ratio of the measurements at Setup 1 (reference) and TULIP.

Fig. 8.
Fig. 8.

EN ratio of the measurements at Setup 2 (reference) and TULIP.

Fig. 9.
Fig. 9.

EN ratio of the measurements at Setup 1 (reference) and TULIP.

Tables (1)

Tables Icon

Table 1. Luminous Responsivity of Photopic and Scotopic Photometer Head with Associated Measurement Uncertaintya

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

EN=|sSUT(λ)sRef(λ)|U2(sSUT(λ))+U2(sRef(λ))1.
sv=1Km·0P(λ,TA)·s(λ)dλ0P(λ,TA)·V(λ)dλ,
sv=1Km·0P(λ,TA)·s(λ)dλ0P(λ,TA)·V(λ)dλ,

Metrics