Abstract

A fast noninterpolation method for calculating displacement of digital speckle images with subpixel precision was introduced. In this method, the precise displacement is obtained from phase shifts of spatial frequency spectra of two digital speckle images instead of digital correlation calculation. First, digital speckle images before and after displacement are windowed and fast Fourier transform is performed. Then, phase shifts of different spatial frequencies are linearly fitted in spectral space using the least square method, and a coarse displacement value is directly calculated according to the phase shift theorem of Fourier transform. By a window technique and iterative procedure, the influence of finite image size on the accuracy of the results is eliminated, and the accurate displacement is obtained finally. It is significant that the method obtains the subpixel-precision displacement without any interpolation operations. The test results show that the method has high computing efficiency, high precision, and good robustness to low image quality.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).
  2. T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
    [CrossRef]
  3. P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
    [CrossRef]
  4. Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
    [CrossRef]
  5. T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
    [CrossRef]
  6. X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
    [CrossRef]
  7. P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
    [CrossRef]
  8. M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
    [CrossRef]
  9. Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
    [CrossRef]
  10. M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
    [CrossRef]
  11. D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
    [CrossRef]
  12. J. Gao and H. Shang, “Deformation-pattern-based digital image correlation method and its application to residual stress measurement,” Appl. Opt. 48, 1371–1381 (2009).
    [CrossRef]
  13. A. A. Grebenyuk and V. P. Ryabukho, “Digital image correlation with fast Fourier transform for large displacement measurement,” Proc. SPIE 7999, 79990B (2010).
    [CrossRef]
  14. T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
    [CrossRef]
  15. M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
    [CrossRef]
  16. Y. P. Tai and X. Z. Li, “Digital speckle correlation method based on wavelet transform using microdisplacement measurement,” Proc. SPIE 7656, 76565P (2010).
    [CrossRef]
  17. Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
    [CrossRef]
  18. M. Malesa and M. Kujawinska, “Modified two-dimensional digital image correlation method with capability of merging of data distributed in time,” Appl. Opt. 51, 8641–8655 (2012).
    [CrossRef]
  19. B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
    [CrossRef]
  20. B. Pan, D. Wu, and L. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409–4419 (2012).
    [CrossRef]
  21. T. Chen, L. L. Wang, S. Yan, J. Wu, L. Cheng, and C. C. Li, “Displacement field analysis based on the combination digital speckle correlation method with radial basis function interpolation,” Appl. Opt. 49, 4545–4553 (2010).
    [CrossRef]
  22. B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
    [CrossRef]
  23. Z. Hu, H. Xie, J. Lu, T. Hua, and J. Zhu, “Study of the performance of different subpixel image correlation methods in 3D digital image correlation,” Appl. Opt. 49, 4044–4051 (2010).
    [CrossRef]
  24. B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
    [CrossRef]
  25. B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
    [CrossRef]
  26. T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).
  27. A. L. Vadnjal, P. Etchepareborda, A. Federico, and G. H. Kaufmann, “Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images,” Appl. Opt. 52, 1805–1813 (2013).
    [CrossRef]
  28. L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376 (1992).
    [CrossRef]
  29. X. Y. Zhang, M. Abe, and M. Kawamata, “An efficient subpixel image registration based on the phase-only correlations of image projections,” in Proceedings of 2010 IEEE International Conference on Communications and Information Technologies (ISCIT 2010) (IEEE, 2010), 997–1001
  30. M. Sjödahl and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
    [CrossRef]
  31. M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
    [CrossRef]
  32. A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
    [CrossRef]
  33. F. Mortazavi, M. Lévesque, and I. Villemure, “Image-based continuous displacement measurements using an improved spectral approach,” Strain 49, 233–248 (2013).
    [CrossRef]
  34. B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
    [CrossRef]
  35. P. Zhou and K. E. Goodson, “Sub pixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
    [CrossRef]
  36. B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
    [CrossRef]
  37. H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
    [CrossRef]
  38. G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
    [CrossRef]
  39. H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
    [CrossRef]

2013

2012

B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
[CrossRef]

M. Malesa and M. Kujawinska, “Modified two-dimensional digital image correlation method with capability of merging of data distributed in time,” Appl. Opt. 51, 8641–8655 (2012).
[CrossRef]

B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. Wu, and L. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409–4419 (2012).
[CrossRef]

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

2011

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
[CrossRef]

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

2010

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Y. P. Tai and X. Z. Li, “Digital speckle correlation method based on wavelet transform using microdisplacement measurement,” Proc. SPIE 7656, 76565P (2010).
[CrossRef]

A. A. Grebenyuk and V. P. Ryabukho, “Digital image correlation with fast Fourier transform for large displacement measurement,” Proc. SPIE 7999, 79990B (2010).
[CrossRef]

T. Chen, L. L. Wang, S. Yan, J. Wu, L. Cheng, and C. C. Li, “Displacement field analysis based on the combination digital speckle correlation method with radial basis function interpolation,” Appl. Opt. 49, 4545–4553 (2010).
[CrossRef]

Z. Hu, H. Xie, J. Lu, T. Hua, and J. Zhu, “Study of the performance of different subpixel image correlation methods in 3D digital image correlation,” Appl. Opt. 49, 4044–4051 (2010).
[CrossRef]

2009

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

J. Gao and H. Shang, “Deformation-pattern-based digital image correlation method and its application to residual stress measurement,” Appl. Opt. 48, 1371–1381 (2009).
[CrossRef]

2008

2006

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

2005

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

2002

B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
[CrossRef]

2001

P. Zhou and K. E. Goodson, “Sub pixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

M. C. Pitter, C. W. See, and M. G. Somekh, “Subpixel microscopic deformation analysis using correlation and artificial neural networks,” Opt. Express 8, 322–327 (2001).
[CrossRef]

2000

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

1998

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

1994

1993

1992

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376 (1992).
[CrossRef]

1989

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

1982

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

Abe, M.

X. Y. Zhang, M. Abe, and M. Kawamata, “An efficient subpixel image registration based on the phase-only correlations of image projections,” in Proceedings of 2010 IEEE International Conference on Communications and Information Technologies (ISCIT 2010) (IEEE, 2010), 997–1001

Asundi, A.

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Avitabile, P.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

Baietto, M. C.

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

Benckert, L. R.

Braasch, J. R.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376 (1992).
[CrossRef]

Bruck, H. A.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Burguete, R. L.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

Chambers, A. R.

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Chen, H. Y.

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

Chen, P. W.

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

Chen, T.

Chen, X.

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

Cheng, L.

Christmas, W. J.

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

Coggrave, C. R.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

Collinson, R.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Combescure, A.

T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
[CrossRef]

Coret, M.

T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
[CrossRef]

Dafang, W.

B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
[CrossRef]

Dai, F. L.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Dulieu-Barton, J.

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Eastop, D.

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Etchepareborda, P.

Federico, A.

Fitch, A. J.

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

Gao, J.

Gao, J. X.

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Goodson, K. E.

P. Zhou and K. E. Goodson, “Sub pixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Grebenyuk, A. A.

A. A. Grebenyuk and V. P. Ryabukho, “Digital image correlation with fast Fourier transform for large displacement measurement,” Proc. SPIE 7999, 79990B (2010).
[CrossRef]

Guo, L.

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

Guo, M.

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

Helfrick, M. N.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

Hild, F.

B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
[CrossRef]

Hu, Z.

Hua, T.

Huang, F. L.

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

Huntley, J. M.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

Kadyrov, A.

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

Kang, Y.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Kaufmann, G. H.

Kawamata, M.

X. Y. Zhang, M. Abe, and M. Kawamata, “An efficient subpixel image registration based on the phase-only correlations of image projections,” in Proceedings of 2010 IEEE International Conference on Communications and Information Technologies (ISCIT 2010) (IEEE, 2010), 997–1001

Khennouf, D.

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Kittler, J.

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

Knauss, W. G.

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

Kujawinska, M.

M. Malesa and M. Kujawinska, “Modified two-dimensional digital image correlation method with capability of merging of data distributed in time,” Appl. Opt. 51, 8641–8655 (2012).
[CrossRef]

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Kwiatkowska, E. A.

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Lennard, F. J.

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

Leplay, P.

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

Lévesque, M.

F. Mortazavi, M. Lévesque, and I. Villemure, “Image-based continuous displacement measurements using an improved spectral approach,” Strain 49, 233–248 (2013).
[CrossRef]

Li, C. C.

Li, D. H.

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

Li, X.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Li, X. Z.

Y. P. Tai and X. Z. Li, “Digital speckle correlation method based on wavelet transform using microdisplacement measurement,” Proc. SPIE 7656, 76565P (2010).
[CrossRef]

Liu, S. Q.

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

Lu, J.

Malesa, M.

M. Malesa and M. Kujawinska, “Modified two-dimensional digital image correlation method with capability of merging of data distributed in time,” Appl. Opt. 51, 8641–8655 (2012).
[CrossRef]

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Malowany, K.

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

McNeill, S. R.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Meille, S.

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

Mortazavi, F.

F. Mortazavi, M. Lévesque, and I. Villemure, “Image-based continuous displacement measurements using an improved spectral approach,” Strain 49, 233–248 (2013).
[CrossRef]

Nguyen, T. N.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

Niezrecki, C.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

Olsson, R.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Pan, B.

B. Pan, D. Wu, and L. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409–4419 (2012).
[CrossRef]

B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
[CrossRef]

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048 (2008).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Peters, W. H.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

Pitsillides, A. A.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Pitter, M. C.

Qian, K.

Qin, Q.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Qiu, T.

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

Qiu, Y.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Ranson, W. F.

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

Rethore, J.

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

Rouba, B. J.

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Roux, S.

B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
[CrossRef]

Ryabukho, V. P.

A. A. Grebenyuk and V. P. Ryabukho, “Digital image correlation with fast Fourier transform for large displacement measurement,” Proc. SPIE 7999, 79990B (2010).
[CrossRef]

Schmidt, T.

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

Schreier, H. W.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

See, C. W.

Shan, L. Y.

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

Shang, H.

Shefelbine, S.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Sjödahl, M.

Somekh, M. G.

Sutton, M. A.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Sztefek, P.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Tai, Y. P.

Y. P. Tai and X. Z. Li, “Digital speckle correlation method based on wavelet transform using microdisplacement measurement,” Proc. SPIE 7656, 76565P (2010).
[CrossRef]

Tan, Y. Q.

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

Targowski, P.

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Tyminska-Widmer, L.

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

Vadnjal, A. L.

Vanleene, M.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

Vendroux, G.

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

Villemure, I.

F. Mortazavi, M. Lévesque, and I. Villemure, “Image-based continuous displacement measurements using an improved spectral approach,” Strain 49, 233–248 (2013).
[CrossRef]

Wagne, B.

B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
[CrossRef]

Wang, H.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Wang, L. L.

Wang, Z.

Wu, D.

B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. Wu, and L. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409–4419 (2012).
[CrossRef]

Wu, J.

Wu, T.

T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
[CrossRef]

Xia, Y.

B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

Xiang, D.

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

Xie, H.

Xie, H. M.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Xie, H.-M.

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Xu, N.

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

Xue, X. F.

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

Yan, S.

Yang, L. X.

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

Yang, X. K.

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

Yong, X.

B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
[CrossRef]

Yu, L.

Zhang, L.

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

Zhang, T.

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

Zhang, X. Y.

X. Y. Zhang, M. Abe, and M. Kawamata, “An efficient subpixel image registration based on the phase-only correlations of image projections,” in Proceedings of 2010 IEEE International Conference on Communications and Information Technologies (ISCIT 2010) (IEEE, 2010), 997–1001

Zhang, Z.

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Zheng, X. T.

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

Zhou, P.

P. Zhou and K. E. Goodson, “Sub pixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Zhou, Z. B.

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

Zhu, J.

Zhu, J. Z.

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

ACM Comput. Surv.

L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv. 24, 325–376 (1992).
[CrossRef]

Appl. Opt.

B. Pan, D. Wu, and L. Yu, “Optimization of a three-dimensional digital image correlation system for deformation measurements in extreme environments,” Appl. Opt. 51, 4409–4419 (2012).
[CrossRef]

T. Chen, L. L. Wang, S. Yan, J. Wu, L. Cheng, and C. C. Li, “Displacement field analysis based on the combination digital speckle correlation method with radial basis function interpolation,” Appl. Opt. 49, 4545–4553 (2010).
[CrossRef]

Z. Hu, H. Xie, J. Lu, T. Hua, and J. Zhu, “Study of the performance of different subpixel image correlation methods in 3D digital image correlation,” Appl. Opt. 49, 4044–4051 (2010).
[CrossRef]

M. Sjödahl and L. R. Benckert, “Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy,” Appl. Opt. 32, 2278–2284 (1993).
[CrossRef]

M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
[CrossRef]

J. Gao and H. Shang, “Deformation-pattern-based digital image correlation method and its application to residual stress measurement,” Appl. Opt. 48, 1371–1381 (2009).
[CrossRef]

M. Malesa and M. Kujawinska, “Modified two-dimensional digital image correlation method with capability of merging of data distributed in time,” Appl. Opt. 51, 8641–8655 (2012).
[CrossRef]

A. L. Vadnjal, P. Etchepareborda, A. Federico, and G. H. Kaufmann, “Measurement of in-plane displacements using the phase singularities generated by directional wavelet transforms of speckle pattern images,” Appl. Opt. 52, 1805–1813 (2013).
[CrossRef]

Chin. J. Lasers

T. Qiu, L. Guo, D. H. Li, J. Z. Zhu, and X. F. Xue, “Digital speckle marginal correlation measuring method,” Chin. J. Lasers 33, 1092–1096 (2006).

Constr. Build. Mater.

Y. Q. Tan, L. Zhang, M. Guo, and L. Y. Shan, “Investigation of the deformation properties of asphalt mixtures with DIC technique,” Constr. Build. Mater. 37, 581–590 (2012).
[CrossRef]

Eur. Phys. J. Appl. Phys.

B. Wagne, S. Roux, and F. Hild, “Spectral approach to displacement evaluation from image analysis,” Eur. Phys. J. Appl. Phys. 17, 247–252 (2002).
[CrossRef]

Exp. Mech.

G. Vendroux and W. G. Knauss, “Submicron deformation field measurements: part 2. improved digital image correlation,” Exp. Mech. 38, 86–92 (1998).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton–Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

IEEE Trans. Image Process.

A. J. Fitch, A. Kadyrov, W. J. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process. 14, 1063–1073 (2005).
[CrossRef]

J. Biomech.

P. Sztefek, M. Vanleene, R. Olsson, R. Collinson, A. A. Pitsillides, and S. Shefelbine, “Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia,” J. Biomech. 43, 599–605 (2010).
[CrossRef]

J. Eur. Ceram. Soc.

P. Leplay, J. Rethore, S. Meille, and M. C. Baietto, “Identification of asymmetric constitutive laws at high temperature based on digital image correlation,” J. Eur. Ceram. Soc. 32, 3949–3958 (2012).
[CrossRef]

Meas. Sci. Technol.

X. Chen, N. Xu, L. X. Yang, and D. Xiang, “High temperature displacement and strain measurement using a monochromatic light illuminated stereo digital image correlation system,” Meas. Sci. Technol. 23, 125603 (2012).
[CrossRef]

B. Pan, H. M. Xie, B. Q. Xu, and F. L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Measurement

Z. Zhang, Y. Kang, H. Wang, Q. Qin, Y. Qiu, and X. Li, “A novel coarse-fine search scheme for digital image correlation method,” Measurement 39, 710–718 (2006).
[CrossRef]

Mech. Syst. Signal Process

M. N. Helfrick, C. Niezrecki, P. Avitabile, and T. Schmidt, “3D digital image correlation methods for full-field vibration measurement,” Mech. Syst. Signal Process 25, 917–927 (2011).
[CrossRef]

Opt. Eng.

T. N. Nguyen, J. M. Huntley, R. L. Burguete, and C. R. Coggrave, “Shape and displacement measurement of discontinuous surfaces by combining fringe projection and digital image correlation,” Opt. Eng. 50, 101505 (2011).
[CrossRef]

W. H. Peters and W. F. Ranson, “Digital imaging techniques in experimental stress analysis,” Opt. Eng. 21, 427–431 (1982).

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

P. Zhou and K. E. Goodson, “Sub pixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC),” Opt. Eng. 40, 1613–1620 (2001).
[CrossRef]

Opt. Express

Opt. Laser Technol.

B. Pan, D. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

Opt. Lasers Eng.

Z. B. Zhou, P. W. Chen, F. L. Huang, and S. Q. Liu, “Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method,” Opt. Lasers Eng. 49, 366–370 (2011).
[CrossRef]

B. Pan, W. Dafang, and X. Yong, “Incremental calculation for large deformation measurement using reliability-guided digital image correlation,” Opt. Lasers Eng. 50, 586–592 (2012).
[CrossRef]

B. Pan, A. Asundi, H.-M. Xie, and J. X. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Opt. Lasers Eng. 47, 865–874 (2009).
[CrossRef]

Proc. SPIE

Y. P. Tai and X. Z. Li, “Digital speckle correlation method based on wavelet transform using microdisplacement measurement,” Proc. SPIE 7656, 76565P (2010).
[CrossRef]

M. Malesa, K. Malowany, L. Tyminska-Widmer, E. A. Kwiatkowska, M. Kujawinska, B. J. Rouba, and P. Targowski, “Application of digital image correlation (DIC) for tracking deformations of paintings on canvas,” Proc. SPIE 8084, 80840L (2011).
[CrossRef]

A. A. Grebenyuk and V. P. Ryabukho, “Digital image correlation with fast Fourier transform for large displacement measurement,” Proc. SPIE 7999, 79990B (2010).
[CrossRef]

T. Zhang, H. Y. Chen, X. K. Yang, and X. T. Zheng, “Investigation for digital speckle correlation method based on improved genetic algorithm,” Proc. SPIE 8205, 82052M (2011).
[CrossRef]

Strain

D. Khennouf, J. Dulieu-Barton, A. R. Chambers, F. J. Lennard, and D. Eastop, “Assessing the feasibility of monitoring strain in historical tapestries using digital image correlation,” Strain 46, 19–32 (2010).
[CrossRef]

T. Wu, M. Coret, and A. Combescure, “Strain localisation and damage measurement by full 3D digital image correlation: application to 15-5PH stainless steel,” Strain 47, 49–61 (2011).
[CrossRef]

F. Mortazavi, M. Lévesque, and I. Villemure, “Image-based continuous displacement measurements using an improved spectral approach,” Strain 49, 233–248 (2013).
[CrossRef]

Other

X. Y. Zhang, M. Abe, and M. Kawamata, “An efficient subpixel image registration based on the phase-only correlations of image projections,” in Proceedings of 2010 IEEE International Conference on Communications and Information Technologies (ISCIT 2010) (IEEE, 2010), 997–1001

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Flow chart of microdisplacement analysis algorithm based on spatial spectral phase shift of digital speckle images.

Fig. 2.
Fig. 2.

Schematics for generating digital speckle images with arbitrary displacement, spatial resolution, and quantized depth through computer simulation.

Fig. 3.
Fig. 3.

Pair of typical simulated digital speckle images with a precise horizontal displacement of 4.255 pixels. The image size is 64*64; quantization bits is 8. (a) before displacement and (b) after displacement.

Fig. 4.
Fig. 4.

Digital speckle images added Gaussian window after iteration process is stable: (a) before displacement and (b) after displacement. The horizontal displacement is 4.255 pixels. The image size is 64*64; quantization bits is 8.

Fig. 5.
Fig. 5.

Iterative convergence process of the SSPSM algorithm under different initial guess displacement. The test image pair has size of 64*64, quantization bits of 8, and actual horizontal displacement of 4.255 pixels.

Fig. 6.
Fig. 6.

Required iterations times for image pairs with different actual horizontal displacements, while accuracy is required less than 0.005 pixels. The test image pair has size of 64*64, quantization bits of 8. The initial guess displacement vector is set to be (0,0).

Fig. 7.
Fig. 7.

Calculated displacements by the SSPSM algorithm and the relative errors under different actual displacements. The test image pair has size of 64*64, quantization bits of 8. The iterative times are 10.

Fig. 8.
Fig. 8.

Pair of digital speckle images with a precise horizontal displacement of 4.255 pixels. The resolution is 16*16; quantization bits is 8.

Fig. 9.
Fig. 9.

Relative errors of the SSPSM algorithm for speckle image pairs with different spatial resolutions. The test image pair has quantization bits of 8. The iterative times are 10.

Fig. 10.
Fig. 10.

Calculated displacements and relative errors for image pairs with an identical displacement of 0.2*M under different spatial resolution. The test image pair has quantization bits of 8. The iterative times are 10.

Fig. 11.
Fig. 11.

Digital speckle image pairs with a precise horizontal displacement of 4.255 pixels. The resolution is 64*64; quantization bits is 4.

Fig. 12.
Fig. 12.

Relative errors of the SSPSM algorithm vary with quantization bits. The test digital speckle images have resolution of 64*64. The iterative times are 10.

Fig. 13.
Fig. 13.

Digital speckle images with nonuniform displacement along horizontal direction. The image size is 64*64, quantization bits is 8. Relative to (a), the speckle pattern (b) has a displacement gradient of 0.05 along horizontal direction and the horizontal displacement at the center of speckle pattern is 4.255 pixels.

Fig. 14.
Fig. 14.

Absolute errors of the SSPSM algorithm vary with displacement gradient. The test digital speckle images have resolution of 64*64 and quantization bits of 8. The iterative times are 10.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=I(xΔx,yΔy),
F(fx,fy)=F(fx,fy)exp[iΔφ(fx)+iΔφ(fy)]
{Δφ(fx)=2πΔxfxΔφ(fy)=2πΔyfy,
F(μ,ν)F(μ,ν)exp[i2π(μMΔx+νNΔy)](μ=0,1,M1ν=0,1,N1)
{Δφ(μ)2πΔxμMΔφ(ν)2πΔyνN,

Metrics