Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast and noninterpolating method for subpixel displacement analysis of digital speckle images using phase shifts of spatial frequency spectra

Not Accessible

Your library or personal account may give you access

Abstract

A fast noninterpolation method for calculating displacement of digital speckle images with subpixel precision was introduced. In this method, the precise displacement is obtained from phase shifts of spatial frequency spectra of two digital speckle images instead of digital correlation calculation. First, digital speckle images before and after displacement are windowed and fast Fourier transform is performed. Then, phase shifts of different spatial frequencies are linearly fitted in spectral space using the least square method, and a coarse displacement value is directly calculated according to the phase shift theorem of Fourier transform. By a window technique and iterative procedure, the influence of finite image size on the accuracy of the results is eliminated, and the accurate displacement is obtained finally. It is significant that the method obtains the subpixel-precision displacement without any interpolation operations. The test results show that the method has high computing efficiency, high precision, and good robustness to low image quality.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Improved digital image correlation for in-plane displacement measurement

Asloob Ahmad Mudassar and Saira Butt
Appl. Opt. 53(5) 960-970 (2014)

Study of the performance of different subpixel image correlation methods in 3D digital image correlation

Zhenxing Hu, Huimin Xie, Jian Lu, Tao Hua, and Jianguo Zhu
Appl. Opt. 49(21) 4044-4051 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved