Abstract

A fused-silica reflection grism (combination of grating and prism) based on the phenomenon of total internal reflection (TIR), and used in the 1st order, is designed and fabricated. The grism is etched directly into the fused-silica prism, which greatly facilitates the use of the TIR grating as no other angle coupling devices are involved. The grating profile is optimized by the use of the rigorous coupled-wave analysis method. Diffraction efficiency of larger than 99% at a wavelength of 980 nm for TM-polarized waves can be theoretically obtained. Two-beam interference lithography and inductively coupled plasma etching techniques are used to manufacture such grism. Diffraction efficiencies of larger than 95% are experimentally demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
    [CrossRef]
  2. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [CrossRef]
  3. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bodefeld, W. G. Theobald, E. Welsch, R. Sauerbrey, and H. Heyer, “High-efficiency dielectric reflection gratings: design, fabrication, and analysis,” Appl. Opt. 38, 6257–6271 (1999).
    [CrossRef]
  4. H. Wei and L. Li, “All-dielectric reflcction gratings: a study of the physical mechanism for achieving high efficiency,” Appl. Opt. 42, 6255–6260 (2003).
    [CrossRef]
  5. J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
    [CrossRef]
  6. J. Wei, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2007).
  7. J. R. Marciante and D. H. Raguin, “High-efficiency, high-dispersion diffraction gratings based on total internal reflection,” Opt. Lett. 29, 542–544 (2004).
    [CrossRef]
  8. J. R. Marciante, J. I. Hirsh, D. H. Raguin, and E. T. Prince, “Polarization-insensitive high-dispersion total internal reflection diffraction gratings,” J. Opt. Soc. Am. A 22, 299–305 (2005).
    [CrossRef]
  9. Y. Zhang and C. Zhou, “High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55  mm for dense wavelength division multiplexing application,” J. Opt. Soc. Am. A 22, 331–334 (2005).
    [CrossRef]
  10. L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
    [CrossRef]
  11. S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
    [CrossRef]
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  13. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  14. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429–4434 (2005).
    [CrossRef]
  15. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao, and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638–6643 (2008).
    [CrossRef]

2010 (1)

2008 (1)

2007 (2)

J. Wei, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058–6063 (2007).

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

2006 (1)

L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
[CrossRef]

2005 (3)

2004 (1)

2003 (1)

1999 (1)

1996 (1)

1995 (1)

1994 (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Bischoff, J.

Bodefeld, R.

Cao, H.

Dai, E.

Eisen, L.

L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
[CrossRef]

Fan, Z.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Feng, J.

Friesem, A. A.

L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
[CrossRef]

Gaylord, T. K.

Golub, M. A.

L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
[CrossRef]

Grann, E. B.

Hehl, K.

Heyer, H.

Hirsh, J. I.

Huang, J.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Jia, W.

Jin, Y.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Lalanne, P.

Li, L.

Liu, S.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Lv, P.

Ma, J.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Marciante, J. R.

Moharam, M. G.

Mohaupt, U.

Morris, G. M.

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Palme, M.

Perry, M. D.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef]

Pommet, D. A.

Prince, E. T.

Raguin, D. H.

Ru, H.

Sauerbrey, R.

Schnabel, B.

Shao, J.

J. Wang, Y. Jin, J. Shao, and Z. Fan, “Optimization design of an ultrabroadband, high efficiency, all-dielectric grating,” Opt. Lett. 35, 187–189 (2010).
[CrossRef]

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Shen, Z.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

Theobald, W. G.

Wang, B.

Wang, J.

Wang, S.

Wei, C.

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Wei, H.

Wei, J.

Welsch, E.

Wenke, L.

Zhang, Y.

Zheng, J.

Zhou, C.

Appl. Opt. (5)

J. Opt. Soc. Am. A (4)

Opt. Commun. (3)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985).
[CrossRef]

L. Eisen, M. A. Golub, and A. A. Friesem, “Total internal reflection diffraction grating in conical mounting,” Opt. Commun. 261, 13–18 (2006).
[CrossRef]

S. Liu, J. Ma, C. Wei, Z. Shen, J. Huang, Y. Jin, J. Shao, and Z. Fan, “Design of high-efficiency diffraction gratings based on total internal reflection for pulse compressor,” Opt. Commun. 273, 290–295 (2007).
[CrossRef]

Opt. Lett. (2)

Science (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of fused-silica prism reflection gratings (n1 and n2, refractive indices of fused silica and air, respectively; Λ, grating period; b, ridge width; h, groove depth; θin_air, incident angles from air; θr, refractive angle of the incident wave; θI, incident angles from fused silica; θw, wedge angle of the prism).

Fig. 2.
Fig. 2.

Contour of the 1st-order diffraction efficiencies versus grating duty cycle and depth for TM-polarized waves: grating period, Λ=450nm; Littrow mounting, θi=48.67°.

Fig. 3.
Fig. 3.

Plot of the reflected 1st-order diffraction efficiency versus incident wavelength for TM-polarized waves: grating period, Λ=450nm; Littrow mounting, θi=48.67°; duty cycle, f=0.42; depth, h=430nm.

Fig. 4.
Fig. 4.

(a) Photograph and (b) SEM picture of the manufactured grism.

Fig. 5.
Fig. 5.

Theoretical and experimental diffraction efficiencies of the 1st diffractive order versus incident angle for rectangular- and sinusoidal-groove grating; the specific parameters used in calculations are shown in the figure.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n1>λ2Λ>n2.
θw+θr=θi,

Metrics