Abstract

This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Stoiber and S. A. Morse, Crystal Identification with the Polarizing Microscope (Chapman & Hall, 1994).
  2. K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
    [CrossRef]
  3. S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
    [CrossRef]
  4. N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).
  5. D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).
  6. R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
    [CrossRef]
  7. R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).
  8. H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
    [CrossRef]
  9. B. L. Van Horn and H. H. Winter, “Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles,” Appl. Opt. 40, 2089–2094 (2001).
    [CrossRef]
  10. Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).
  11. Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).
  12. Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
    [CrossRef]
  13. Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
    [CrossRef]
  14. Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
    [CrossRef]
  15. Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, 2012).
  16. B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21, 6451–6461 (2005).
    [CrossRef]
  17. D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).
  18. I. C. Khoo, Liquid Crystals (Wiley, 2007).
  19. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

2013 (3)

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).

2012 (3)

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
[CrossRef]

Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
[CrossRef]

2011 (1)

R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).

2010 (1)

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

2005 (1)

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21, 6451–6461 (2005).
[CrossRef]

2004 (1)

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

2003 (1)

D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).

2002 (1)

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

2001 (1)

1998 (1)

S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
[CrossRef]

1979 (1)

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Abbott, N. L.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21, 6451–6461 (2005).
[CrossRef]

Ando, T.

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

Barberi, R.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Bisoyi, H. K.

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bunning, T. J.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Chonoa, S.

S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
[CrossRef]

Ciuchi, F.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Clare, B. H.

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21, 6451–6461 (2005).
[CrossRef]

Denn, M. M.

S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
[CrossRef]

Dong, R. Y.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Durand, G. E.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Fukuda, A.

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

Hayashi, N.

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

Hu, Q. Z.

D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).

Iovane, M.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Jang, C. H.

D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).

Jenkins, F. A.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

Kang, S. W.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Kato, T.

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

Khoo, I. C.

I. C. Khoo, Liquid Crystals (Wiley, 2007).

Kumar, S.

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Lagerwall, S. T.

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Li, Q.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
[CrossRef]

Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
[CrossRef]

Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, 2012).

Li, Y.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
[CrossRef]

Liu, D.

D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).

Marenduzzo, D.

D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).

Marini, A.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Matham, M. V.

R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).

McQueen, D.

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Morse, S. A.

R. E. Stoiber and S. A. Morse, Crystal Identification with the Polarizing Microscope (Chapman & Hall, 1994).

Nguyen, N.-T.

R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).

Orlandini, E.

D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).

Ranjini, R.

R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).

Sikharulidze, D.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Skarp, K.

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Sonnet, A. M.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Srinivasarao, M.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Stebler, B.

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Stoiber, R. E.

R. E. Stoiber and S. A. Morse, Crystal Identification with the Polarizing Microscope (Chapman & Hall, 1994).

Suresh, K. A.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Tsujia, T.

S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
[CrossRef]

Urbas, A.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
[CrossRef]

Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
[CrossRef]

Van Horn, B. L.

Virga, E. G.

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Wang, M.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Wang, Y.

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
[CrossRef]

White, H. E.

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

White, T. J.

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Winter, H. H.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Xue, C.

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Yeomans, J. M.

D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).

Yoon, H. G.

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Yoon, H.-G.

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

Angew. Chem. Int. Ed (2)

Y. Li, M. Wang, T. J. White, T. J. Bunning, and Q. Li, “Azoarenes with opposite chiral configurations: light-driven reversible handedness inversion in self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 8925–8929 (2013).

Y. Li, C. Xue, M. Wang, A. Urbas, and Q. Li, “Photodynamic chiral molecular switches with thermal stability: from reflection wavelength tuning to handedness inversion of self-organized helical superstructures,” Angew. Chem. Int. Ed 52, 13703–13707 (2013).

Appl. Opt. (1)

Colloids Surf. B (1)

D. Liu, Q. Z. Hu, and C. H. Jang, “Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface,” Colloids Surf. B 108, 142–146 (2013).

Eur. Phys. J. E (1)

R. Barberi, F. Ciuchi, G. E. Durand, M. Iovane, D. Sikharulidze, A. M. Sonnet, and E. G. Virga, “Electric field induced order reconstruction in a nematic cell,” Eur. Phys. J. E 13, 61–71 (2004).
[CrossRef]

Euro. Phys. Lett. (1)

D. Marenduzzo, E. Orlandini, and J. M. Yeomans, “Rheology of distorted nematic liquid crystals,” Euro. Phys. Lett. 64, 406–412 (2003).

J. Am. Chem. Soc. (2)

Y. Wang, A. Urbas, and Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” J. Am. Chem. Soc. 134, 3342–3345 (2012).
[CrossRef]

Y. Li, A. Urbas, and Q. Li, “Reversible light-directed red, green, and blue reflection with thermal stability enabled by a self-organized helical superstructure,” J. Am. Chem. Soc. 134, 9573–9576 (2012).
[CrossRef]

J. Mater. Chem (1)

Y. Wang, H.-G. Yoon, H. K. Bisoyi, S. Kumar, and Q. Li, “Hybrid rod-like and bent-core liquid crystal dimers exhibiting biaxial smectic A and nematic phases,” J. Mater. Chem 22, 20363–20367 (2012).
[CrossRef]

J. Non-Newtonian Fluid Mech. (1)

S. Chonoa, T. Tsujia, and M. M. Denn, “Spatial development of director orientation of tumbling nematic liquid crystals in pressure-driven channel flow,” J. Non-Newtonian Fluid Mech. 79, 515–527 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Hayashi, T. Kato, T. Ando, and A. Fukuda, “Molecular ordering deformation induced by externally applied electronic field in an antiferroelectric liquid crystal,” Jpn. J. Appl. Phys. 41, 5292–5297 (2002).

Langmuir (1)

B. H. Clare and N. L. Abbott, “Orientations of nematic liquid crystals on surfaces presenting controlled densities of peptides: amplification of protein-peptide binding events,” Langmuir 21, 6451–6461 (2005).
[CrossRef]

Opt. Mater. (1)

R. Ranjini, M. V. Matham, and N.-T. Nguyen, “Analysis on the birefringence property of lyotropic liquid crystals below Krafft temperature,” Opt. Mater. 33, 1338–1341 (2011).

Phys. Rev. E (1)

H. G. Yoon, S. W. Kang, R. Y. Dong, A. Marini, K. A. Suresh, M. Srinivasarao, and S. Kumar, “Nematic biaxiality in a bent-core material,” Phys. Rev. E 81, 051706 (2010).
[CrossRef]

Physica Scripta (1)

K. Skarp, S. T. Lagerwall, B. Stebler, and D. McQueen, “Flow alignment in cyanobiphenyl liquid crystals,” Physica Scripta 19, 339–342 (1979).
[CrossRef]

Other (5)

R. E. Stoiber and S. A. Morse, Crystal Identification with the Polarizing Microscope (Chapman & Hall, 1994).

Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, 2012).

I. C. Khoo, Liquid Crystals (Wiley, 2007).

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, 1976).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of NLC cell kept between crossed polarizers.

Fig. 2.
Fig. 2.

Illustration of planar aligned NLC cell with laser irradiation along z axis: (a) field-OFF state and (b) field-ON state.

Fig. 3.
Fig. 3.

Conoscopic interference pattern obtained for planar aligned NLC medium (a) static state, V=0V; (b) V=10V; (c) V=15V; (d) V=20V; (e) V=25V; (f) V=30V; (g) V=35V; (h) V=40V; (i) V=45V; (j) V=50V; (k) V=5; (l) V=60V.

Fig. 4.
Fig. 4.

Representation of vibration components transmitted by polarizer and analyzer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Fd=12K11(·n)2+K33|n××n|2+felectric,
It=E2[cos2χsin2ϕsin2(φχ)sin2(δ2)].
It=E2{sin22ϕsin2(δ2)}.

Metrics