Abstract

Organic light-emitting diodes (OLEDs) are used almost exclusively for display purposes. Even when implemented as a sensing component, it is rarely in a manner that exploits the possible compliance of the OLED. Here it is shown that OLEDs can be integrated into compliant mechanical micro-devices making a new range of applications possible. A light-modulating pressure sensor is considered, whereby the OLED is integrated with a silicon membrane. It is shown that such devices have potential and advantages over current measurement techniques. An analytical model has been developed that calculates the response of the device. Ray tracing numerical simulations verify the theory and show that the design can be optimized to maximize the resolution of the sensor.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
    [CrossRef]
  2. H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
    [CrossRef]
  3. M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
    [CrossRef]
  4. J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
    [CrossRef]
  5. J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
    [CrossRef]
  6. Y. Cai, “Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors,” Master Thesis (Iowa State University, 2010).
  7. C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
    [CrossRef]
  8. Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
    [CrossRef]
  9. Z. Ma, “An electronic second skin,” Science 333, 830–831 (2011).
    [CrossRef]
  10. T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010).
    [CrossRef]
  11. J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
    [CrossRef]
  12. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
    [CrossRef]
  13. C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
    [CrossRef]
  14. A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
    [CrossRef]
  15. S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
    [CrossRef]
  16. Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.
  17. K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
    [CrossRef]
  18. B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
    [CrossRef]
  19. V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
    [CrossRef]
  20. X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
    [CrossRef]
  21. M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
    [CrossRef]
  22. D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
    [CrossRef]
  23. C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).
  24. M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
    [CrossRef]
  25. U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
    [CrossRef]
  26. Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
    [CrossRef]
  27. K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
    [CrossRef]
  28. Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
    [CrossRef]
  29. C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
    [CrossRef]
  30. B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
    [CrossRef]
  31. E. Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker, 2001).
  32. J. N. Reddy, Theory and Analysis of Elastic Plates (Taylor & Francis, 1999).
  33. M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007).
    [CrossRef]
  34. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  35. P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill, 1936).
  36. X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
    [CrossRef]
  37. D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

2014

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

2013

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

2012

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

2011

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Z. Ma, “An electronic second skin,” Science 333, 830–831 (2011).
[CrossRef]

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
[CrossRef]

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

2010

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010).
[CrossRef]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef]

X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
[CrossRef]

2008

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
[CrossRef]

2007

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007).
[CrossRef]

2004

B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
[CrossRef]

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

2002

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

1992

B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
[CrossRef]

1990

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

1989

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
[CrossRef]

Amelung, J.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Aylott, J. W.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Ballarotto, V. W.

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

Bao, S.

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

Blanchetiere, C.

X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
[CrossRef]

Brignone, M.

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Cai, Y.

Y. Cai, “Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors,” Master Thesis (Iowa State University, 2010).

Capel-Cuevas, S.

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Capitán-Vallvey, L. F.

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

Chae, H.

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Chang, H.-W.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Chen, C. H.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
[CrossRef]

Chen, D.

Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
[CrossRef]

Chen, Z.

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

Cheneler, D.

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Chen-Esterlit, Z.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Cheng, H.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Choudhury, B.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Choudhury, B. J.

B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
[CrossRef]

Chung, H. K.

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Chuo, Y.

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Clemens, F.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
[CrossRef]

Cuéllar, M. P.

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Dai, X. L.

X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
[CrossRef]

De Cicco, G.

B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
[CrossRef]

de Orbe, I.

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

de Orbe-Payá, I.

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Deshpande, M.

M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007).
[CrossRef]

Egami, Y.

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

Fan, S.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Friedl, J. H.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Gather, M. C.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Gawronski, U.

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

Gong, Q.

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

Grillberger, C.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Grossmann, C.

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

Guo, Z.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Harada, T.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Hines, D. R.

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

Hofmann, S.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Hsia, T. Y.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Huang, Y.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef]

Iba, S.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Ikeda, K.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Kaminska, B.

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Kaneko, K.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Kanoh, S.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Kato, Y.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Kawaguchi, H.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Kim, C.-H.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Kim, Y. H.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Kobayashi, T.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Koley, G.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Kopelman, R.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Kreye, D.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Kuwayama, H.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Lambertini, V. G.

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Landrock, C.

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Lee, J.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Lee, S. I.

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Leo, K.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Li, C.

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

Li, J. J.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Li, Y.

Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
[CrossRef]

Liu, E.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Liu, T. L.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Liu, X.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Liu, Z.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

López-Ruiz, N.

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

Lu, Z. H.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Luo, D. Y.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Luong, M. P.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
[CrossRef]

Lussem, B.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Ma, Z.

Z. Ma, “An electronic second skin,” Science 333, 830–831 (2011).
[CrossRef]

Man, J. X.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Martinez-Olmos, A.

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

Matsuda, Y.

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

Matsuo, A.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Mihailov, S. J.

X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
[CrossRef]

Miyamoto, K.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Modest, M. F.

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).

Moon, P.

P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill, 1936).

Morten, B.

B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
[CrossRef]

Muller-Meskamp, L.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Narayan, R. K.

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

Niimi, T.

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

Nishikawa, T.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Nomani, M. W.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Notni, G.

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

Omrane, B.

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Palma, A. J.

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

Park, J. W.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

Park, J.-S.

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Park, S. H.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

Patel, J. N.

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Pegalajar, M. C.

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Perske, F.

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

Prudenziati, M.

B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
[CrossRef]

Qu, B.

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

Ramuz, M.

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

Reckziegel, S.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Reddy, J. N.

J. N. Reddy, Theory and Analysis of Elastic Plates (Taylor & Francis, 1999).

Reng, L.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Rogers, J. A.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef]

Rothmaier, M.

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
[CrossRef]

Saggere, L.

M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007).
[CrossRef]

Sakurai, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Savvateev, V.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Schöning, M. J.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Sekitani, T.

T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010).
[CrossRef]

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Shao, Y.

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

Shin, D. C.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

Shinar, J.

B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
[CrossRef]

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Shinar, R.

B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
[CrossRef]

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Shutter, L. A.

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

Solin, S. A.

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

Someya, T.

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef]

T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010).
[CrossRef]

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Tang, C. W.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
[CrossRef]

Tang, Z.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Tee, B. C.-K.

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

Thienpont, H.

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Tok, J. B.-H.

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

Törker, M.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Tünnermann, A.

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

Ueno, K.

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

VanSlyke, S. A.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
[CrossRef]

Ventsel, E.

E. Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker, 2001).

Vervaeke, M.

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Vogel, U.

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

Wagner, T.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Wang, J.

Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
[CrossRef]

Wang, Z. B.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Watanabe, T.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Wen, X.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Williams, E. D.

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

Wu, C.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Wu, C.-C.

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

Wu, P.-M.

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

Xiao, L.

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

Xie, W.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Xing, W.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Xiong, S.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Xu, T.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Yamaguchi, H.

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

Yoshida, T.

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Yoshinobu, T.

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

Yu, G.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Yu, L. M.

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

Zhang, M.

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

Zhang, Z.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Zhao, Y.

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Zhu, Y.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Zou, L.

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

Adv. Mater.

T. Sekitani and T. Someya, “Stretchable, large-area organic electronics,” Adv. Mater. 22, 2228–2246 (2010).
[CrossRef]

M. Ramuz, B. C.-K. Tee, J. B.-H. Tok, and S. Bao, “Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics,” Adv. Mater. 24, 3223–3227 (2012).
[CrossRef]

Appl. Phys. Lett.

C. Li, P.-M. Wu, L. A. Shutter, and R. K. Narayan, “Dual-mode operation of flexible piezoelectric polymer diaphragm for intracranial pressure measurement,” Appl. Phys. Lett. 96, 053502 (2010).
[CrossRef]

V. Savvateev, Z. Chen-Esterlit, J. W. Aylott, B. Choudhury, C.-H. Kim, L. Zou, J. H. Friedl, R. Shinar, J. Shinar, and R. Kopelman, “Integrated organic light-emitting device/fluorescence-based chemical sensors,” Appl. Phys. Lett. 81, 4652–4654 (2002).
[CrossRef]

J. Appl. Phys.

C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3617 (1989).
[CrossRef]

D. Y. Luo, L. M. Yu, J. X. Man, T. L. Liu, J. J. Li, T. Xu, Z. Liu, Z. B. Wang, and Z. H. Lu, “A bi-functional structure with tunable electrical and optical properties for organic photovoltaic cells,” J. Appl. Phys. 113, 224506 (2013).
[CrossRef]

H.-W. Chang, J. Lee, S. Hofmann, Y. H. Kim, L. Muller-Meskamp, B. Lussem, C.-C. Wu, K. Leo, and M. C. Gather, “Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells,” J. Appl. Phys. 113, 204502 (2013).
[CrossRef]

M. Zhang, Z. Chen, L. Xiao, B. Qu, and Q. Gong, “Optical design for improving optical properties of top-emitting organic light emitting diodes,” J. Appl. Phys. 113, 113105 (2013).
[CrossRef]

D. R. Hines, V. W. Ballarotto, E. D. Williams, Y. Shao, and S. A. Solin, “Transfer printing methods for the fabrication of flexible organic electronics,” J. Appl. Phys. 101, 024503 (2007).
[CrossRef]

J. Micromech. Microeng.

X. Liu, Y. Zhu, M. W. Nomani, X. Wen, T. Y. Hsia, and G. Koley, “A highly sensitive pressure sensor using a Au-patterned polydimethylsiloxane membrane for biosensing applications,” J. Micromech. Microeng. 23, 025022 (2013).
[CrossRef]

Mater. Science Forum

Y. Li, D. Chen, and J. Wang, “Vacuum adhesive bonding and stress isolation for MEMS resonant pressure sensor package,” Mater. Science Forum 694, 896–900 (2011).
[CrossRef]

Microchem. J.

S. Capel-Cuevas, M. P. Cuéllar, I. de Orbe-Payá, M. C. Pegalajar, and L. F. Capitán-Vallvey, “Full-range optical pH sensor array based on neural networks,” Microchem. J. 97, 225–233 (2011).
[CrossRef]

Microsyst. Technol.

Z. Tang, S. Fan, W. Xing, Z. Guo, and Z. Zhang, “An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation,” Microsyst. Technol. 17, 1481–1490 (2011).
[CrossRef]

Opt. Eng.

X. L. Dai, S. J. Mihailov, and C. Blanchetiere, “Optical evanescent field waveguide Bragg grating pressure sensor,” Opt. Eng. 49, 024401 (2010).
[CrossRef]

Proc. Natl. Acad. Sci.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101, 9966–9970 (2004).
[CrossRef]

Proc. SPIE

C. Grossmann, U. Gawronski, F. Perske, G. Notni, and A. Tünnermann, “Optical system designs based on bi-directional sensor devices,” Proc. SPIE 8487, 848706 (2012).
[CrossRef]

B. J. Choudhury, R. Shinar, and J. Shinar, “Luminescent chemical and biological sensors based on the structural integration of an OLED excitation source with a sensing component,” Proc. SPIE 5214, 64–72 (2004).
[CrossRef]

U. Vogel, D. Kreye, S. Reckziegel, M. Törker, C. Grillberger, and J. Amelung, “OLED-on-CMOS integration for optoelectronic sensor applications,” Proc. SPIE 6477, 647703 (2007).
[CrossRef]

D. Cheneler, M. Vervaeke, H. Thienpont, V. G. Lambertini, and M. Brignone, “OLED integrated silicon membranes for light modulation devices,” Proc. SPIE 9141, 9141–9146 (2014).

Science

Z. Ma, “An electronic second skin,” Science 333, 830–831 (2011).
[CrossRef]

J. A. Rogers, T. Someya, and Y. Huang, “Materials and mechanics for stretchable electronics,” Science 327, 1603–1607 (2010).
[CrossRef]

Semicond. Sci. Technol.

J. W. Park, D. C. Shin, and S. H. Park, “Large-area OLED lightings and their applications,” Semicond. Sci. Technol. 26, 034002 (2011).
[CrossRef]

J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol. 26, 034001 (2011).
[CrossRef]

Sens. Actuators A

M. Deshpande and L. Saggere, “An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator,” Sens. Actuators A 136, 673–689 (2007).
[CrossRef]

B. Morten, G. De Cicco, and M. Prudenziati, “Resonant pressure sensor based on piezoelectric properties of ferroelectric thick films,” Sens. Actuators A 31, 153–158 (1992).
[CrossRef]

Sens. Actuators B

K. Miyamoto, K. Kaneko, A. Matsuo, T. Wagner, S. Kanoh, M. J. Schöning, and T. Yoshinobu, “Miniaturized chemical imaging sensor system using an OLED display panel,” Sens. Actuators B 170, 82–87 (2012).
[CrossRef]

A. Martinez-Olmos, S. Capel-Cuevas, N. López-Ruiz, A. J. Palma, I. de Orbe, and L. F. Capitán-Vallvey, “Sensor array-based optical portable instrument for determination of pH,” Sens. Actuators B 156, 840–848 (2011).
[CrossRef]

Sens. Actuatuators A

K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and T. Harada, “Silicon pressure sensor integrates resonant strain gauge on diaphragm,” Sens. Actuatuators A 21, 146–150 (1990).
[CrossRef]

Sensors

M. Rothmaier, M. P. Luong, and F. Clemens, “Textile pressure sensor made of flexible plastic optical fibers,” Sensors 8, 4318–4329 (2008).
[CrossRef]

Y. Matsuda, K. Ueno, H. Yamaguchi, Y. Egami, and T. Niimi, “Organic electroluminescent sensor for pressure measurement,” Sensors 12, 13899–13906 (2012).
[CrossRef]

SID Symposium Digest of Technical Papers

C. Wu, Y. Zhao, S. Xiong, E. Liu, W. Xie, L. Reng, H. Cheng, and G. Yu, “Design on a novel a-Si PIN/OLED image sensor & display device,” SID Symposium Digest of Technical Papers 30, 528–531 (2012).

Other

E. Ventsel, Thin Plates and Shells: Theory, Analysis, and Applications (Marcel Dekker, 2001).

J. N. Reddy, Theory and Analysis of Elastic Plates (Taylor & Francis, 1999).

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).

P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill, 1936).

Y. Cai, “Organic light emitting diodes (OLEDs) and OLED-based structurally integrated optical sensors,” Master Thesis (Iowa State University, 2010).

Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in IEEE Sensors, Kona, Hawaii, 1–4 November2010, pp. 155–159.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the light modulating pressure sensor. The arrows in the center denote the coordinate system used in the derivation.

Fig. 2.
Fig. 2.

Change in signal amplitude calculated from Eq. (18) due to change in the applied pressure relative to the signal amplitude when there is no deflection for different mask radii (Rm). (a) Aperture radius is 50 μm. (b) Aperture radius is 500 μm.

Fig. 3.
Fig. 3.

Signal amplitude ratio (dB) between applied pressures of 0 and 150 kPa. The red line is the predicted response from Eq. (18), and the black circles denote that predicted from the numerical analysis. Membrane radius is 4.2 mm, the OLED active area radius is 0.5 mm, the gap between membrane and aperture is 425 μm, and the top cover thickness is 100 μm. The depicted sweep of the camera aperture radius shows an optimum at 0.5 mm, i.e., the same radius as the active area.

Fig. 4.
Fig. 4.

Signal amplitude ratio (dB) between applied pressures of 0 and 150 kPa. The red line is the predicted response from Eq. (18), and the black circles denote that predicted from the numerical analysis. Membrane radius is 4.2 mm, the gap between membrane and aperture is 425 μm, and the top cover thickness is 100 μm. OLED active area radius equals the camera aperture radius. Smallest aperture in the simulation is 50 μm radius.

Fig. 5.
Fig. 5.

Normalized signal amplitude of sensor between applied pressures of 0 and 150 kPa for different aperture thicknesses. Membrane radius is 4.2 mm, and the gap between membrane and aperture is 425 um. The OLED active area radius equals the camera aperture radius (0.5 mm). A large thickness limits the amount of angles that are admitted through the aperture because of the increased aspect ratio.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

w(x,y)=P64D(Ri2(x2+y2))2,
D=A11D11B112A11.
dFdAidAj=(n^i·sij)(n^j·sji)πS4dAj,
J(r)=2πI(r,s^)n^·s^dΩ,
EdAiAj=I(ri)dAiAj(n^i·sij)(n^j·sji)πS4dAj.
EAi=πAiI(ri)dAi.
EAiAj=AiAjI(ri)(n^i·sij)(n^j·sji)πS4dAjdAi.
n^i=(w(x,y)x,w(x,y)y,1)(w(x,y)x)2+(w(x,y)y)2+1.
n^j=(0,0,1).
sij=(xjxi,yjyi,hw(xi,yi)),
S=([xjxi]2+[yjyi]2+[hw(xi,yi)]2)1/2.
dAi=((w(xi,yi)xi)2+(w(xi,yi)yi)2+1)dxidyi.
dAj=dxjdyj.
I(ri)=I0Φ(Rmxi2+yi2).
EAiAj=I0πRiRiRi2yi2Ri2yi2RjRjRj2y2Rj2y2Φ(Rmxi2+yi2)f(xj,yj,xi,yi)dxjdyjdxidyi,
f(xj,yj,xi,yi)=[w(xi,yi)xi{xjxi}w(xi,yi)yi{yjyi}+{hw(xi,yi)}](hw(xi,yi))([xjxi]2+[yjyi]2+[hw(xi,yi)]2)2
f(xj,yj,xi,yi)=[Pxi16D(Ri2(xi2+yi2)){xjxi}+Pyi16D(Ri2(xi2+yi2)){yjyi}+z]z([xjxi]2+[yjyi]2+[hP64D(Ri2(xi2+yi2))2]2)2
EAiAj=I032Drj=0Rjri=0Rmθ=02πg(ri,rj,θ)dθdridrj
g(ri,rj,θ)=[4Prirjcosθ(Ri2ri2)+P(Ri43ri4)+2PRi2ri264hD]rirj(ri2+rj22rirjcosθ+[hP64D(Ri2ri2)2]2)2[hP64D(Ri2ri2)2].
A=[A11A12A12A11]=[k=1nEk(1υk2)(zkzk1)k=1nυkEk(1υk2)(zkzk1)k=1nυkEk(1υk2)(zkzk1)k=1nEk(1υk2)(zkzk1)],
B=[B11B12B12B11]=12[k=1nEk(1υk2)(zk2zk12)k=1nυkEk(1υk2)(zk2zk12)k=1nυkEk(1υk2)(zk2zk12)k=1nEk(1υk2)(zk2zk12)],
D=[D11D12D12D11]=13[k=1nEk(1υk2)(zk3zk13)k=1nυkEk(1υk2)(zk3zk13)k=1nυkEk(1υk2)(zk3zk13)k=1nEk(1υk2)(zk3zk13)].

Metrics