X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

D.-F. Wang, H.-T. Qiao, X.-L. Song, Y.-B. Fan, and D.-Y. Li, “Fluorescence molecular tomography using a two-step three-dimensional shape-based reconstruction with graphic processing unit acceleration,” Appl. Opt. 51, 8731–8744 (2012).

[CrossRef]

M. Schweiger, “GPU-accelerated finite element method for modeling light transport in diffuse optical tomography,” Int. J. Biomed. Imag. 2011, 403892 (2011).

[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3126 (2010).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

Y. Zhai and S. A. Cummer, “Fast tomographic reconstruction strategy for diffuse optical tomography,” Opt. Express 17, 5285–5297 (2009).

[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning for problems including the mass matrix,” Electron. Trans. Numer. Anal. 34, 125–135 (2009).

W. Bangerth and A. Joshi, “Adaptive finite element methods for the solution of inverse problems in optical tomography,” Inverse Probl. 24, 034011 (2008).

[CrossRef]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition algorithm for fast O (N2 log N) reprojection of tomographic images,” IEEE Trans. Image Process. 9, 1573–1582 (2000).

[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

M. J. Eppstein and D. E. Dougherty, “Optimal 3-D travel time tomography,” Geophysics 63, 1053–1061 (1998).

[CrossRef]

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

L. Badea, “On the Schwarz alternation method with more than two subdomains for nonlinear monotone problems,” SIAM J. Numer. Anal. 28, 179–204 (1991).

[CrossRef]

P. C. Hansen, “Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank,” SIAM J. Sci. Comput. 11, 503–518 (1990).

[CrossRef]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT 27, 534–553 (1987).

[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

L. Badea, “On the Schwarz alternation method with more than two subdomains for nonlinear monotone problems,” SIAM J. Numer. Anal. 28, 179–204 (1991).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

W. Bangerth and A. Joshi, “Adaptive finite element methods for the solution of inverse problems in optical tomography,” Inverse Probl. 24, 034011 (2008).

[CrossRef]

A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition algorithm for fast O (N2 log N) reprojection of tomographic images,” IEEE Trans. Image Process. 9, 1573–1582 (2000).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition algorithm for fast O (N2 log N) reprojection of tomographic images,” IEEE Trans. Image Process. 9, 1573–1582 (2000).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

M. J. Eppstein and D. E. Dougherty, “Optimal 3-D travel time tomography,” Geophysics 63, 1053–1061 (1998).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

M. J. Eppstein and D. E. Dougherty, “Optimal 3-D travel time tomography,” Geophysics 63, 1053–1061 (1998).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3126 (2010).

[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

P. C. Hansen, “Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank,” SIAM J. Sci. Comput. 11, 503–518 (1990).

[CrossRef]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT 27, 534–553 (1987).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

W. Bangerth and A. Joshi, “Adaptive finite element methods for the solution of inverse problems in optical tomography,” Inverse Probl. 24, 034011 (2008).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition algorithm for fast O (N2 log N) reprojection of tomographic images,” IEEE Trans. Image Process. 9, 1573–1582 (2000).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Oxford Science, 1999).

A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning for problems including the mass matrix,” Electron. Trans. Numer. Anal. 34, 125–135 (2009).

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

M. Schweiger, “GPU-accelerated finite element method for modeling light transport in diffuse optical tomography,” Int. J. Biomed. Imag. 2011, 403892 (2011).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

A. Toselli and O. Widlund, Domain Decomposition Methods Algorithm and Theory (Springer, 2005).

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Oxford Science, 1999).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning for problems including the mass matrix,” Electron. Trans. Numer. Anal. 34, 125–135 (2009).

A. Toselli and O. Widlund, Domain Decomposition Methods Algorithm and Theory (Springer, 2005).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

J. Li, X. Yi, X. Wang, Y.-M. Lu, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Overlap time-gating approach for improving time-domain diffuse fluorescence tomography based on the IRF-calibrated Born normalization,” Opt. Lett. 38, 1841–1843 (2013).

[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3126 (2010).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

F. Yang, F. Gao, P.-Q. Ruan, and H.-J. Zhao, “Combined domain-decomposition and matrix-decomposition scheme for large-scale diffuse optical tomography,” Appl. Opt. 49, 3111–3126 (2010).

[CrossRef]

F. Gao, P. Poulet, and Y. Yamada, “Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography,” Appl. Opt. 39, 5898–5910 (2000).

[CrossRef]

D.-F. Wang, H.-T. Qiao, X.-L. Song, Y.-B. Fan, and D.-Y. Li, “Fluorescence molecular tomography using a two-step three-dimensional shape-based reconstruction with graphic processing unit acceleration,” Appl. Opt. 51, 8731–8744 (2012).

[CrossRef]

W. Zhang, L.-H. Wu, W.-J. Ma, J. Li, W.-T. Chen, X. Wang, X. Yi, Y.-M. Lu, Z.-X. Zhou, L.-M. Zhang, H.-J. Zhao, and F. Gao, “Combined time-domain hemoglobin and fluorescence diffuse optical tomography for breast tumor diagnosis: a methodological study,” Biomed. Opt. Express 4, 331–348 (2013).

[CrossRef]

P. C. Hansen, “The truncated SVD as a method for regularization,” BIT 27, 534–553 (1987).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J.-W. Luo, and J. Bai, “Acceleration of early-photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

C. J. Palansuriya, C.-H. Lai, C. S. Lerotheou, and K. A. Pericleous, “A domain decomposition based algorithm for nonlinear 2D inverse heat conduction problems,” Contemp Math. 218, 515–522 (1998).

[CrossRef]

A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning for problems including the mass matrix,” Electron. Trans. Numer. Anal. 34, 125–135 (2009).

M. J. Eppstein and D. E. Dougherty, “Optimal 3-D travel time tomography,” Geophysics 63, 1053–1061 (1998).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

A. Boag, Y. Bresler, and E. Michielssen, “A multilevel domain decomposition algorithm for fast O (N2 log N) reprojection of tomographic images,” IEEE Trans. Image Process. 9, 1573–1582 (2000).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, “Three-dimensional Bayesian optical image reconstruction with domain decomposition,” IEEE Trans. Med. Imaging 20, 147–163 (2001).

[CrossRef]

M. Schweiger, “GPU-accelerated finite element method for modeling light transport in diffuse optical tomography,” Int. J. Biomed. Imag. 2011, 403892 (2011).

[CrossRef]

K. Kwon, B. Yazici, and M. Guven, “Two-level domain decomposition methods for diffuse tomography,” Inverse Probl. 22, 1533–1559 (2006).

[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).

[CrossRef]

W. Bangerth and A. Joshi, “Adaptive finite element methods for the solution of inverse problems in optical tomography,” Inverse Probl. 24, 034011 (2008).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–399 (1993).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).

[CrossRef]

X. Yi, W.-T. Chen, L.-H. Wu, W.-J. Ma, W. Zhang, J. Li, X. Wang, and F. Gao, “GPU-accelerated Monte Carlo modeling for fluorescence propagation in turbid medium,” Proc. SPIE 8216, 82160U (2012).

[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).

[CrossRef]

L. Badea, “On the Schwarz alternation method with more than two subdomains for nonlinear monotone problems,” SIAM J. Numer. Anal. 28, 179–204 (1991).

[CrossRef]

P. C. Hansen, “Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank,” SIAM J. Sci. Comput. 11, 503–518 (1990).

[CrossRef]

A. Toselli and O. Widlund, Domain Decomposition Methods Algorithm and Theory (Springer, 2005).

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Oxford Science, 1999).