Abstract

A sensitive birefringent thermometer based on a SiO2 waveguide ring resonator is demonstrated in this paper. It can be used to fabricate a terahertz thermal detector. The temperature sensitivity is enhanced by the resonances of two polarization modes in the waveguide ring resonator. A high degree of common rejection exists for external influence. A linear temperature range from 6°C to 40°C has been detected with resolution of 0.025°C.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
    [CrossRef]
  2. C. E. Lee, R. A. Atkins, and H. F. Taylor, “Performance of a fiber-optic temperature sensor from −200 to 1050°C,” Opt. Lett. 13, 1038–1040 (1988).
    [CrossRef]
  3. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C,” Opt. Express 17, 21551–21559 (2009).
    [CrossRef]
  4. N. Pala and A. N. Abbas, “Terahertz technology for nano applications,” in Encyclopedia of Nanotechnology (Springer, 2012), pp. 2653–2667.
  5. J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
    [CrossRef]
  6. C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).
  7. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
    [CrossRef]
  8. H. Y. Choi, K. S. Park, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry–Perot interferometer,” Opt. Lett. 33, 2455–2457 (2008).
    [CrossRef]
  9. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37, 5082–5084 (2012).
    [CrossRef]
  10. S. M. Jeon and Y. P. Kim, “Temperature measurements using fiber optic polarization interferometer,” Opt. Laser Technol. 36, 181–185 (2004).
    [CrossRef]
  11. W. Eickhoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6, 204–206 (1981).
    [CrossRef]
  12. G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.
  13. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (1992), pp. 163–172.
  14. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
    [CrossRef]
  15. X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31, 366–374 (2013).
    [CrossRef]
  16. X. Yu, H. Ma, and Z. Jin, “Improving thermal stability of a resonator fiber optic gyro employing a polarizing resonator,” Opt. Express 21, 358–369 (2013).
    [CrossRef]
  17. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
    [CrossRef]
  18. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro,” Appl. Opt. 25, 2606–2612 (1986).
    [CrossRef]
  19. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  20. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6, 569–571 (1981).
    [CrossRef]
  21. P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
    [CrossRef]

2013 (3)

2012 (4)

H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
[CrossRef]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach–Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37, 5082–5084 (2012).
[CrossRef]

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

2004 (1)

S. M. Jeon and Y. P. Kim, “Temperature measurements using fiber optic polarization interferometer,” Opt. Laser Technol. 36, 181–185 (2004).
[CrossRef]

1994 (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

1988 (1)

1986 (1)

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1981 (2)

1974 (1)

J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
[CrossRef]

Abbas, A. N.

N. Pala and A. N. Abbas, “Terahertz technology for nano applications,” in Encyclopedia of Nanotechnology (Springer, 2012), pp. 2653–2667.

Atkins, R. A.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Braendle, H.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
[CrossRef]

Chen, C.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Chen, Q.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Choi, E. S.

Choi, H. Y.

Clarke, J.

J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
[CrossRef]

Coviello, G.

Demma, N.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.

Eickhoff, W.

Ezekiel, S.

Finazzi, V.

Guo, J.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

He, Z.

Higashiguchi, M.

Hoffer, G. I.

J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
[CrossRef]

Hotate, K.

Hu, T. Y.

Iwatsuki, K.

Jeon, S. M.

S. M. Jeon and Y. P. Kim, “Temperature measurements using fiber optic polarization interferometer,” Opt. Laser Technol. 36, 181–185 (2004).
[CrossRef]

Jin, Z.

Kim, Y. P.

S. M. Jeon and Y. P. Kim, “Temperature measurements using fiber optic polarization interferometer,” Opt. Laser Technol. 36, 181–185 (2004).
[CrossRef]

Kobelke, J.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

Krippner, P.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
[CrossRef]

Lee, B. H.

Lee, C. E.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Li, A.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Liao, C. R.

Lopez-Amo, M.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

Ma, H.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Paek, U.

Pala, N.

N. Pala and A. N. Abbas, “Terahertz technology for nano applications,” in Encyclopedia of Nanotechnology (Springer, 2012), pp. 2653–2667.

Park, K. S.

Park, S. J.

Pinto, A. M. R.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

Prentiss, M. G.

Pruneri, V.

Ren, L.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Richards, P. L.

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
[CrossRef]

Rouse, G. F.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.

Sanders, G. A.

G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6, 569–571 (1981).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (1992), pp. 163–172.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.

Schuster, K.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

Smith, R. B.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (1992), pp. 163–172.

Taylor, H. F.

Ukil, A.

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
[CrossRef]

Villatoro, J.

Wang, C.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Wang, D. N.

Wang, X.

Wang, Y.

Xue, Y.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Yang, R.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Yu, X.

Yu, Y.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Zhang, X.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Zhu, C.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Zhu, F.

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

Appl. Opt. (1)

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Chem. Res. Chin. Univ. (1)

C. Wang, F. Zhu, L. Ren, A. Li, C. Chen, R. Yang, J. Guo, Y. Xue, X. Zhang, C. Zhu, Q. Chen, and Y. Yu, “Robust high temperature sensor probe based on a Ni-coated fiber bragg grating,” Chem. Res. Chin. Univ. 29, 1199–1202 (2013).

IEEE Sens. J. (1)

A. Ukil, H. Braendle, and P. Krippner, “Distributed temperature sensing: review of technology and applications,” IEEE Sens. J. 12, 885–892 (2012).
[CrossRef]

J. Appl. Phys. (1)

P. L. Richards, “Bolometers for infrared and millimeter waves,” J. Appl. Phys. 76, 1–24 (1994).
[CrossRef]

J. Lightw. Technol. (1)

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightw. Technol. 30, 1168–1172 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Laser Technol. (1)

S. M. Jeon and Y. P. Kim, “Temperature measurements using fiber optic polarization interferometer,” Opt. Laser Technol. 36, 181–185 (2004).
[CrossRef]

Opt. Lett. (6)

Rev. Phys. Appl. (1)

J. Clarke, G. I. Hoffer, and P. L. Richards, “Superconducting tunnel junction bolometers,” Rev. Phys. Appl. 9, 69–71 (1974).
[CrossRef]

Other (3)

N. Pala and A. N. Abbas, “Terahertz technology for nano applications,” in Encyclopedia of Nanotechnology (Springer, 2012), pp. 2653–2667.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (1988), pp. 409–412.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization-rotating resonator,” in Fiber Optic Gyros: 15th Anniversary Conference (1992), pp. 163–172.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of a waveguide ring resonator.

Fig. 2.
Fig. 2.

Simulated resonant curves as a function of the birefringent phase difference. (a)–(d) correspond to the cases of 0, 0.5π, π, and 1.5π, respectively. The simulation parameters are l=7.9cm, k=0.03, θt=3.22°, and α=0.19dB.

Fig. 3.
Fig. 3.

Relationship between the detected and the temperature-induced birefringent phase difference from (a) 0 to 2π and (b) from 0 to 0.07π.

Fig. 4.
Fig. 4.

Test configuration of a birefringent thermometer. SG, signal generator; PM fiber, polarization maintaining fiber.

Fig. 5.
Fig. 5.

One polarization mode’s resonance.

Fig. 6.
Fig. 6.

Measured resonances with temperature changing from 20°C to 40°C.

Fig. 7.
Fig. 7.

Demodulation output of two ESOPs at 6°C.

Fig. 8.
Fig. 8.

Measured temperature curve from 6°C to 40°C.

Fig. 9.
Fig. 9.

Schematic diagram of a terahertz thermal detector.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ΔT=Δϕk0lΔnT,
S=α1kejβl(cosθtejΔβl/2sinθtejΔβl/2sinθtejΔβl/2cosθtejΔβl/2),
Svm=λmvm(m=1,2).
{λ1=α1kej(βlξ)λ2=α1kej(βl+ξ),
cosξ=cosθtcosΔβl2.
2ξ=Δβl.
{E4,ESOP1=av1nλ1n=av111λ1E4,ESOP2=bv2nλ2n=bv211λ2,
Δϕ=2ξ=ϕd,Δβlθt.
ΔTmin=ΓfNphηDτ/ΔnT,

Metrics