M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

S. Li, X. Wang, and Y. Bu, “Robust pixel-based source and mask optimization for inverse lithography,” Opt. Laser Technol. 45, 285–293 (2013).

[CrossRef]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]

X. Ma, Z. Song, Y. Li, and G. R. Arce, “Block-based mask optimization for optical lithography,” Appl. Opt. 52, 3351–3363 (2013).

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]

B. S. Lazarov, M. Schevenels, and O. Sigmund, “Topology optimization considering material and geometric uncertainties using stochastic collocation methods,” Struct. Multidiscip. Optim. 46, 597–612 (2012).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust levelset-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

P. Yu, D. Z. Pan, and C. A. Mack, “True process variation aware optical proximity correction with variational lithography modeling and model calibration,” J. Micro/Nanolith. MEMS MOEMS 6, 031004 (2007).

O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).

A. Poonawala and P. Milanfar, “Mask design for optical microlithography an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Micro/Nanolith. MEMS MOEMS 5, 043002 (2006).

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).

J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Act. 76, 463–469 (1999).

O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mech. Struct. Machines 25, 493–524 (1997).

M. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comp. Meth. App. Mech. Eng. 71, 197–224 (1988).

K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Int. J. Numer. Methods Eng. 24, 359–397 (1987).

M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phaseshifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).

[CrossRef]

X. Ma, Z. Song, Y. Li, and G. R. Arce, “Block-based mask optimization for optical lithography,” Appl. Opt. 52, 3351–3363 (2013).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).

M. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comp. Meth. App. Mech. Eng. 71, 197–224 (1988).

M. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications (Springer, 2003).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Act. 76, 463–469 (1999).

S. Li, X. Wang, and Y. Bu, “Robust pixel-based source and mask optimization for inverse lithography,” Opt. Laser Technol. 45, 285–293 (2013).

[CrossRef]

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, 2008).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Micro/Nanolith. MEMS MOEMS 5, 043002 (2006).

J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust levelset-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Act. 76, 463–469 (1999).

M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

M. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comp. Meth. App. Mech. Eng. 71, 197–224 (1988).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust levelset-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

B. S. Lazarov, M. Schevenels, and O. Sigmund, “Topology optimization considering material and geometric uncertainties using stochastic collocation methods,” Struct. Multidiscip. Optim. 46, 597–612 (2012).

M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phaseshifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).

[CrossRef]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]

S. Li, X. Wang, and Y. Bu, “Robust pixel-based source and mask optimization for inverse lithography,” Opt. Laser Technol. 45, 285–293 (2013).

[CrossRef]

X. Ma, Z. Song, Y. Li, and G. R. Arce, “Block-based mask optimization for optical lithography,” Appl. Opt. 52, 3351–3363 (2013).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

C. Mack, Fundamental Principles of Optical Lithography: The Science of Micro-Fabrication (Wiley, 2007).

P. Yu, D. Z. Pan, and C. A. Mack, “True process variation aware optical proximity correction with variational lithography modeling and model calibration,” J. Micro/Nanolith. MEMS MOEMS 6, 031004 (2007).

A. Poonawala and P. Milanfar, “Mask design for optical microlithography an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

P. Yu, D. Z. Pan, and C. A. Mack, “True process variation aware optical proximity correction with variational lithography modeling and model calibration,” J. Micro/Nanolith. MEMS MOEMS 6, 031004 (2007).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

A. Poonawala and P. Milanfar, “Mask design for optical microlithography an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).

M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

B. S. Lazarov, M. Schevenels, and O. Sigmund, “Topology optimization considering material and geometric uncertainties using stochastic collocation methods,” Struct. Multidiscip. Optim. 46, 597–612 (2012).

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust levelset-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

B. S. Lazarov, M. Schevenels, and O. Sigmund, “Topology optimization considering material and geometric uncertainties using stochastic collocation methods,” Struct. Multidiscip. Optim. 46, 597–612 (2012).

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).

J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Act. 76, 463–469 (1999).

O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mech. Struct. Machines 25, 493–524 (1997).

M. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications (Springer, 2003).

M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phaseshifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).

[CrossRef]

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Int. J. Numer. Methods Eng. 24, 359–397 (1987).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phaseshifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).

[CrossRef]

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).

S. Li, X. Wang, and Y. Bu, “Robust pixel-based source and mask optimization for inverse lithography,” Opt. Laser Technol. 45, 285–293 (2013).

[CrossRef]

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

P. Yu, D. Z. Pan, and C. A. Mack, “True process variation aware optical proximity correction with variational lithography modeling and model calibration,” J. Micro/Nanolith. MEMS MOEMS 6, 031004 (2007).

M. Bendsøe and N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comp. Meth. App. Mech. Eng. 71, 197–224 (1988).

M. Levenson, N. Viswanathan, and R. Simpson, “Improving resolution in photolithography with a phaseshifting mask,” IEEE Trans. Electron Devices 29, 1828–1836 (1982).

[CrossRef]

A. Poonawala and P. Milanfar, “Mask design for optical microlithography an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

J. Guest, J. Prevost, and T. Belytschko, “Achieving minimum length scale in topology optimization using nodal design variables and projection functions,” Int. J. Numer. Methods Eng. 61, 238–254 (2004).

K. Svanberg, “The method of moving asymptotes—a new method for structural optimization,” Int. J. Numer. Methods Eng. 24, 359–397 (1987).

P. Yu, D. Z. Pan, and C. A. Mack, “True process variation aware optical proximity correction with variational lithography modeling and model calibration,” J. Micro/Nanolith. MEMS MOEMS 6, 031004 (2007).

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Micro/Nanolith. MEMS MOEMS 5, 043002 (2006).

M. A. Philippine, O. Sigmund, G. M. Rebeiz, and T. W. Kenny, “Topology optimization of stressed capacitive RF MEMS switches,” J. Microelectromech. Syst. 22, 206–215 (2013).

N. Jia and E. Y. Lam, “Machine learning for inverse lithography: using stochastic gradient descent for robust photomask synthesis,” J. Opt. 12, 045601 (2010).

[CrossRef]

J. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5, 308–321 (2011).

O. Sigmund, “On the design of compliant mechanisms using topology optimization,” Mech. Struct. Machines 25, 493–524 (1997).

O. Sardan, V. Eichhorn, D. Petersen, S. Fatikow, O. Sigmund, and P. Bøggild, “Rapid prototyping of nanotube-based devices using topology-optimized microgrippers,” Nanotechnology 19, 495503 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

Y. Shen, N. Jia, N. Wong, and E. Y. Lam, “Robust levelset-based inverse lithography,” Opt. Express 19, 5511–5521 (2011).

[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]

J. Li, Y. Shen, and E. Y. Lam, “Hotspot-aware fast source and mask optimization,” Opt. Express 20, 21792–21804 (2012).

[CrossRef]

J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21, 8076–8090 (2013).

[CrossRef]

S. Li, X. Wang, and Y. Bu, “Robust pixel-based source and mask optimization for inverse lithography,” Opt. Laser Technol. 45, 285–293 (2013).

[CrossRef]

J. L. Sturtevant, J. A. Torres, J. Word, and P. L. Y. Granik, “Consideration for the use of defocus models for OPC,” Proc. SPIE 5756, 427–436 (2005).

[CrossRef]

J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Act. 76, 463–469 (1999).

S. Choy, N. Jia, C. Tong, M. Tang, and E. Lam, “A robust computational algorithm for inverse photomask synthesis in optical projection lithography,” SIAM J. Imag. Sci. 5, 625–651 (2012).

M. Jansen, B. S. Lazarov, M. Schevenels, and O. Sigmund, “On the similarities between micro/nano lithography and topology optimization projection methods,” Struct. Multidiscip. Optim. 48, 717–730 (2013).

F. Wang, B. Lazarov, and O. Sigmund, “On projection methods, convergence and robust formulations in topology optimization,” Struct. Multidiscip. Optim. 43, 767–784 (2011).

O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007).

B. S. Lazarov, M. Schevenels, and O. Sigmund, “Topology optimization considering material and geometric uncertainties using stochastic collocation methods,” Struct. Multidiscip. Optim. 46, 597–612 (2012).

M. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications (Springer, 2003).

C. Mack, Fundamental Principles of Optical Lithography: The Science of Micro-Fabrication (Wiley, 2007).

Z. Cui, Nanofabrication: Principles, Capabilities and Limits (Springer, 2008).