Abstract

Polypropylene is considered as a representative thermoplastic matrix for advanced composite materials that have some advantages in various engineering applications. Wide-range infrared optical properties of polypropylene are important for combined heat transfer modeling in these composite materials, which are semitransparent in a considerable part of the whole spectral range. This study is focused on optical properties of polypropylene in the visible and near-infrared ranges because the measurements in these ranges exhibit a stronger effect of the processing temperature used in the material manufacturing. The experimental study is based on spectral measurements of both the normal-hemispherical reflectance and transmittance of polypropylene samples. The main characteristics of volumetric absorption and scattering are identified using the inverse problem solution based on the modified two-flux approximation, which is sufficiently accurate to determine the hemispherical characteristics of the radiation field in the range of the problem parameters. In particular, the effect of a relatively strong scattering is observed at the absorption peaks in the near-infrared range. An approximate theoretical model based on spectroscopic data is developed to estimate morphological changes arising in thermal processing of polypropylene at different temperatures.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Offringa, “Thermoplastic applications composites-rapid,” Composites A: Appl. Sci. Manuf. 27, 329–336 (1996).
  2. D. Hull and T. Clyne, An Introduction to Composite Materials (Cambridge University, 1996).
  3. T. G. Gutowski, Advanced Composites Manufacturing (Wiley, 1997).
  4. F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
    [CrossRef]
  5. P. Mallick and S. Newman, Composite Materials Technology: Process and Properties (Hanser, 1990).
  6. D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
    [CrossRef]
  7. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2001).
  8. B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).
  9. R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
    [CrossRef]
  10. M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
    [CrossRef]
  11. G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
    [CrossRef]
  12. F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
    [CrossRef]
  13. M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).
  14. R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
    [CrossRef]
  15. M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7, 1103–1112 (1939).
    [CrossRef]
  16. M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).
    [CrossRef]
  17. M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change III,” J. Chem. Phys. 9, 177–184 (1941).
    [CrossRef]
  18. D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000).
    [CrossRef]
  19. J.-F. Sacadura and D. Baillis, “Experimental characterization of thermal radiation properties of dispersed media,” Int. J. Therm. Sci. 41, 699–707 (2002).
  20. J.-F. Sacadura, “Thermal radiative properties of complex media: theoretical prediction versus experimental identification,” Heat Transf. Eng. 32, 754–770 (2011).
  21. L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
    [CrossRef]
  22. L. A. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements,” J. Opt. Soc. Am. A 23, 91–98 (2006).
    [CrossRef]
  23. L. A. Dombrovsky, “The use of approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).
  24. L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).
  25. R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).
  26. L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
    [CrossRef]
  27. H. M. Ã. Shabana, “Determination of film thickness and refractive index by interferometry,” Polym. Test. 23, 695–702 (2004).
  28. L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).
  29. L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
    [CrossRef]
  30. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  31. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  32. C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” in Annual Review of Numerical Fluid Mechanics and Heat Transfer (Hemisphere, 1987), Vol. 1, pp. 1–32.
  33. A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions, 3rd ed. (Praxis, 2004).
  34. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).
  35. L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).
  36. R. Guzzi and R. Rizzi, “Water vapor absorption in the visible and near infrared: results of field measurements,” Appl. Opt. 23, 1853–1861 (1984).
    [CrossRef]

2012 (1)

L. A. Dombrovsky, “The use of approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

2011 (5)

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

J.-F. Sacadura, “Thermal radiative properties of complex media: theoretical prediction versus experimental identification,” Heat Transf. Eng. 32, 754–770 (2011).

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

2010 (1)

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

2007 (1)

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).

2006 (1)

2005 (1)

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

2004 (1)

H. M. Ã. Shabana, “Determination of film thickness and refractive index by interferometry,” Polym. Test. 23, 695–702 (2004).

2003 (2)

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
[CrossRef]

2002 (1)

J.-F. Sacadura and D. Baillis, “Experimental characterization of thermal radiation properties of dispersed media,” Int. J. Therm. Sci. 41, 699–707 (2002).

2001 (1)

D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
[CrossRef]

2000 (1)

D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000).
[CrossRef]

1996 (1)

R. Offringa, “Thermoplastic applications composites-rapid,” Composites A: Appl. Sci. Manuf. 27, 329–336 (1996).

1994 (1)

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

1992 (1)

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

1988 (1)

F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
[CrossRef]

1984 (1)

1976 (1)

G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
[CrossRef]

1972 (1)

M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
[CrossRef]

1941 (1)

M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change III,” J. Chem. Phys. 9, 177–184 (1941).
[CrossRef]

1940 (1)

M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).
[CrossRef]

1939 (1)

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[CrossRef]

Avrami, M.

M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change III,” J. Chem. Phys. 9, 177–184 (1941).
[CrossRef]

M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).
[CrossRef]

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[CrossRef]

Baillis, D.

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).

L. A. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements,” J. Opt. Soc. Am. A 23, 91–98 (2006).
[CrossRef]

J.-F. Sacadura and D. Baillis, “Experimental characterization of thermal radiation properties of dispersed media,” Int. J. Therm. Sci. 41, 699–707 (2002).

D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000).
[CrossRef]

L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brucato, V.

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

Clyne, T.

D. Hull and T. Clyne, An Introduction to Composite Materials (Cambridge University, 1996).

Coccorullo, I.

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

De Sousa Meneses, D.

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

Dombrovsky, L.

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).

Dombrovsky, L. A.

L. A. Dombrovsky, “The use of approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

L. A. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements,” J. Opt. Soc. Am. A 23, 91–98 (2006).
[CrossRef]

L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Drolen, B. L.

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” in Annual Review of Numerical Fluid Mechanics and Heat Transfer (Hemisphere, 1987), Vol. 1, pp. 1–32.

Echegut, P.

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

Enguehard, F.

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

Friedrich, K.

D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
[CrossRef]

Gutowski, T. G.

T. G. Gutowski, Advanced Composites Manufacturing (Wiley, 1997).

Guzzi, R.

Horn, B.

G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
[CrossRef]

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2001).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hull, D.

D. Hull and T. Clyne, An Introduction to Composite Materials (Cambridge University, 1996).

Kantz, M.

M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
[CrossRef]

Kawasaki, Y.

F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
[CrossRef]

Kim, D.

D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
[CrossRef]

Kokhanovsky, A. A.

A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions, 3rd ed. (Praxis, 2004).

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Lallich, S.

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

Le Maoult, Y.

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
[CrossRef]

Lebrun, J. L.

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

Lee, W. I.

D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
[CrossRef]

Lipinski, W.

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

Mallick, P.

P. Mallick and S. Newman, Composite Materials Technology: Process and Properties (Hanser, 1990).

Mendoza, R.

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

Menges, G.

G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Mitsuyoshi, F.

F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
[CrossRef]

Monteix, S.

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
[CrossRef]

Newman, J.

M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
[CrossRef]

Newman, S.

P. Mallick and S. Newman, Composite Materials Technology: Process and Properties (Hanser, 1990).

Offringa, R.

R. Offringa, “Thermoplastic applications composites-rapid,” Composites A: Appl. Sci. Manuf. 27, 329–336 (1996).

Pantani, R.

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

Piccarolo, S.

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

Randrianalisoa, J.

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).

L. A. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements,” J. Opt. Soc. Am. A 23, 91–98 (2006).
[CrossRef]

Randrianalisoa, J. H.

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

Régnier, G.

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

Rizzi, R.

Rousseau, B.

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

Sacadura, J.-F.

J.-F. Sacadura, “Thermal radiative properties of complex media: theoretical prediction versus experimental identification,” Heat Transf. Eng. 32, 754–770 (2011).

J.-F. Sacadura and D. Baillis, “Experimental characterization of thermal radiation properties of dispersed media,” Int. J. Therm. Sci. 41, 699–707 (2002).

D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000).
[CrossRef]

Saiu, M.

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

Schmidt, F. M.

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
[CrossRef]

Seiler, W.

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

Shabana, H. M. Ã.

H. M. Ã. Shabana, “Determination of film thickness and refractive index by interferometry,” Polym. Test. 23, 695–702 (2004).

Siegel, R.

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2001).

Speranza, V.

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

Spuckler, C. M.

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

Stigale, F.

M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
[CrossRef]

Thovert, J.-F.

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

Tien, C. L.

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” in Annual Review of Numerical Fluid Mechanics and Heat Transfer (Hemisphere, 1987), Vol. 1, pp. 1–32.

Titomanlia, G.

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

Titomanlio, G.

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Wakino, T.

F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
[CrossRef]

Wubken, G.

G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
[CrossRef]

Appl. Opt. (1)

Colloid Polym. Sci. (1)

G. Menges, G. Wubken, and B. Horn, “Effect of the processing conditions on the crystallinity and morphological structure of partially crystalline injection moldings,” Colloid Polym. Sci. 254, 267–278 (1976).
[CrossRef]

Compos. Sci. Technol. (1)

D. Kim, W. I. Lee, and K. Friedrich, “A model for a thermoplastic pultrusion process using commingled yarns,” Compos. Sci. Technol. 61, 1065–1077 (2001).
[CrossRef]

Composites A: Appl. Sci. Manuf. (1)

R. Offringa, “Thermoplastic applications composites-rapid,” Composites A: Appl. Sci. Manuf. 27, 329–336 (1996).

Comput. Therm. Sci. (1)

L. A. Dombrovsky, “The use of approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

Heat Transf. Eng. (1)

J.-F. Sacadura, “Thermal radiative properties of complex media: theoretical prediction versus experimental identification,” Heat Transf. Eng. 32, 754–770 (2011).

Int. J. Heat Mass Transfer (2)

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Infrared radiative properties of polymer coatings containing hollow microspheres,” Int. J. Heat Mass Transfer 50, 1516–1527 (2007).

Int. J. Therm. Sci. (2)

J.-F. Sacadura and D. Baillis, “Experimental characterization of thermal radiation properties of dispersed media,” Int. J. Therm. Sci. 41, 699–707 (2002).

B. Rousseau, D. De Sousa Meneses, P. Echegut, and J.-F. Thovert, “Textural parameters influencing the radiative properties of a semitransparent porous media,” Int. J. Therm. Sci. 50, 178–186 (2011).

Int. Polym. Process. (1)

M. Saiu, V. Brucato, S. Piccarolo, and G. Titomanlio, “Injection molding of isotactic polypropylene (iPP). An integrated experimental investigation,” Int. Polym. Process. 7, 267–273 (1992).

J. Am. Ceram. Soc. (1)

L. A. Dombrovsky, B. Rousseau, P. Echegut, J. H. Randrianalisoa, and D. Baillis, “High temperature infrared properties of YSZ electrolyte ceramics for SOFCs: experimental determination and theoretical modeling,” J. Am. Ceram. Soc. 94, 4310–4316 (2011).
[CrossRef]

J. Appl. Phys. (1)

L. Dombrovsky, S. Lallich, F. Enguehard, and D. Baillis, “An effect of “scattering by absorption” observed in near-infrared properties of nanoporous silica,” J. Appl. Phys. 107, 083106 (2010).
[CrossRef]

J. Appl. Polym. Sci. (2)

M. Kantz, J. Newman, and F. Stigale, “The skin-core morphology and structure–property relationships in injection-molded polypropylene,” J. Appl. Polym. Sci. 16, 1249–1260 (1972).
[CrossRef]

F. Mitsuyoshi, T. Wakino, and Y. Kawasaki, “Structure of skin layer in injection-molded polypropylene,” J. Appl. Polym. Sci. 35, 29–49 (1988).
[CrossRef]

J. Chem. Phys. (3)

M. Avrami, “Kinetics of phase change. I General theory,” J. Chem. Phys. 7, 1103–1112 (1939).
[CrossRef]

M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” J. Chem. Phys. 8, 212–224 (1940).
[CrossRef]

M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change III,” J. Chem. Phys. 9, 177–184 (1941).
[CrossRef]

J. Mater. Process. Technol. (1)

F. M. Schmidt, Y. Le Maoult, and S. Monteix, “Modelling of infrared heating of thermoplastic sheet used in thermoforming process,” J. Mater. Process. Technol. 144, 225–231 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

L. A. Dombrovsky, J. H. Randrianalisoa, W. Lipiński, and D. Baillis, “Approximate analytical solution to normal emittance of semi-transparent layer of an absorbing, scattering, and refracting medium,” J. Quant. Spectrosc. Radiat. Transfer 112, 1987–1994 (2011).
[CrossRef]

D. Baillis and J.-F. Sacadura, “Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,” J. Quant. Spectrosc. Radiat. Transfer 67, 327–363 (2000).
[CrossRef]

J. Spectosc. Dynamics (1)

L. A. Dombrovsky, D. Baillis, and J. H. Randrianalisoa, “Some physical models used to identify and analyze infrared radiative properties of semi-transparent dispersed materials,” J. Spectosc. Dynamics 1, 1–20 (2011).

Polym. Test. (1)

H. M. Ã. Shabana, “Determination of film thickness and refractive index by interferometry,” Polym. Test. 23, 695–702 (2004).

Polymer (1)

R. Mendoza, G. Régnier, W. Seiler, and J. L. Lebrun, “Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions,” Polymer 44, 3363–3373 (2003).
[CrossRef]

Prog. Polym. Sci. (1)

R. Pantani, I. Coccorullo, V. Speranza, and G. Titomanlia, “Modeling of morphology evolution in the injection molding process of thermoplastic polymers,” Prog. Polym. Sci. 30, 1185–1222 (2005).
[CrossRef]

Other (10)

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4th ed. (Taylor & Francis, 2001).

P. Mallick and S. Newman, Composite Materials Technology: Process and Properties (Hanser, 1990).

D. Hull and T. Clyne, An Introduction to Composite Materials (Cambridge University, 1996).

T. G. Gutowski, Advanced Composites Manufacturing (Wiley, 1997).

L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” in Annual Review of Numerical Fluid Mechanics and Heat Transfer (Hemisphere, 1987), Vol. 1, pp. 1–32.

A. A. Kokhanovsky, Optics of Light Scattering Media: Problems and Solutions, 3rd ed. (Praxis, 2004).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics