Abstract

We demonstrate a semi-open cavity in-fiber Mach–Zehnder interferometer based on optical fiber tube (OFT) for temperature measurement with high sensitivity. The interferometer is composed of an OFT sandwiched between two multimode fibers, with lateral offset. The air hole of the OFT was not completely sealed and liquid is poured into the air hole through the unsealed gap. Light from the multimode fiber is split into two beams: one beam transmits directly through the silica tube while the other travels along the liquid-filled cavity. The device has ultra-high temperature sensitivity due to the much larger thermo-optic coefficient of the liquid compared with that of silica. Experimental results show that the temperature sensitivity is 6.35 nm/°C for an ethanol-filled structure.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. Y. Yu, H. Tam, W. Chung, and M. S. Demokan, “Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature,” Opt. Lett. 25, 1141–1143 (2000).
    [CrossRef]
  3. B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
    [CrossRef]
  4. S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
    [CrossRef]
  5. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
    [CrossRef]
  6. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).
  7. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36, 3753–3755 (2011).
    [CrossRef]
  8. R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 3.
  9. S. Qiu, Y. Chen, F. Xu, and Y. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37, 863–865 (2012).
    [CrossRef]
  10. W. Qian, C. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36, 1548–1560 (2011).
    [CrossRef]
  11. Y. Xue, Y. Yu, R. Yang, C. Wang, C. Chen, J. Guo, X. Zhang, C. Zhu, and H. Sun, “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Opt. Lett. 38, 1209–1211 (2013).
    [CrossRef]
  12. L. Sun, J. Li, Y. Tan, X. Shen, X. Xie, S. Gao, and B. Guan, “Miniature highly birefringent microfiber loop with extremely high refractive index sensitivity,” Opt. Express 20, 10180–10185 (2012).
    [CrossRef]
  13. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010).
    [CrossRef]
  14. D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
    [CrossRef]
  15. H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
    [CrossRef]
  16. A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, and J. Digweed, “Temperature-independent highly birefringent photonic crystal fiber,” Opt. Express 12, 5160–5165 (2004).
    [CrossRef]
  17. R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
    [CrossRef]

2013

2012

2011

2010

2009

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

2008

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16, 11369–11375 (2008).
[CrossRef]

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

2004

2002

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
[CrossRef]

2000

1998

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Abe, I.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Åslund, M.

Canning, J.

Chan, C. C.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

Chen, C.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

Chen, Y.

Chung, W.

Chung, Y.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Demokan, M. S.

Digweed, J.

Dong, X.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

W. Qian, C. Zhao, S. He, X. Dong, S. Zhang, Z. Zhang, S. Jin, J. Guo, and H. Wei, “High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror,” Opt. Lett. 36, 1548–1560 (2011).
[CrossRef]

Duan, D.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Fabris, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gao, S.

Gong, H.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

Guan, B.

Guo, J.

He, S.

Hwang, D.

James, S. W.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
[CrossRef]

Jiang, L.

Jin, S.

Kalinowski, H. J.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Kamikawachi, R. C.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 3.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Khaliq, S.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B. H.

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

Li, B.

Li, J.

Liu, S.

Lu, P.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27, 370–374 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

Lu, Y.

Lyytikäinen, K.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

Michie, A.

Moon, D. S.

Moon, S.

Muller, M.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Nguyen, L. V.

Nishii, J.

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

Paterno, A. S.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Pinto, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qian, W.

Qiu, S.

Raoa, Y.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Shen, X.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

Sun, H.

Sun, L.

Tam, H.

Tan, Y.

Tatam, R. P.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
[CrossRef]

Wang, C.

Wang, D. N.

Wang, M.

Wang, S.

Wang, Y.

Wei, H.

Wong, W.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

Wua, D.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Xie, X.

Xu, F.

Xua, L.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Xue, Y.

Yang, J.

Yang, M.

Yang, R.

Yao, J.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Yu, Y.

Zhang, S.

Zhang, X.

Zhang, Y.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

Zhang, Z.

Zhao, C.

Zhu, C.

Zhua, T.

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Appl. Phys. Lett.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131100 (2009).

Electron. Lett.

B. H. Lee and J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

IEEE Sens. J.

H. Gong, C. C. Chan, Y. Zhang, W. Wong, and X. Dong, “Temperature sensor based on modal interference in hollow-core photonic bandgap fiber with collapse splicing,” IEEE Sens. J. 12, 1421–1424 (2012).
[CrossRef]

J. Lightwave Technol.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

S. Khaliq, S. W. James, and R. P. Tatam, “Enhanced sensitivity fibre optic long period grating temperature sensor,” Meas. Sci. Technol. 13, 792–795 (2002).
[CrossRef]

Opt. Commun.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun. 281, 621–625 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B

D. Duan, Y. Raoa, L. Xua, T. Zhua, D. Wua, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B 160, 1198–1202 (2011).
[CrossRef]

Other

R. Kashyap, Fiber Bragg Gratings (Academic, 1999), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic configuration of the OFT-based semi-open cavity MZI. (b) Cross section view of the etched OFT and (c) microscope image of fabricated MZI.

Fig. 2.
Fig. 2.

Simulated intensity distributions of electric fields on the x-z plane: (a) OFT-based semi-open cavity MZI and (b) surface core SMF-based full-open cavity MZI.

Fig. 3.
Fig. 3.

Transmission spectra of the OFT-based MZIs in air with OFT length of (a) 350 μm and (b) 2.145 mm.

Fig. 4.
Fig. 4.

Wavelength shift of interference dip versus temperature of the MZI with OFT length of 270 μm, with inset of transmission spectra at different temperatures.

Fig. 5.
Fig. 5.

Unpackaged MZI with OFT length of 240 μm in ethanol; (a) transmission spectra at different temperatures and (b) wavelength shift of interference dip versus temperature.

Fig. 6.
Fig. 6.

Ethanol-packaged MZI with OFT length of 240 μm; (a) transmission spectra at different temperatures and (b) wavelength shift of interference dip versus temperature.

Fig. 7.
Fig. 7.

Distilled water-packaged MZI with OFT length of 2.145 mm; (a) transmission spectra at different temperatures and (b) wavelength shift of interference dip versus temperature.

Fig. 8.
Fig. 8.

Wavelength shift of interference dip versus time.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=Icavity+Itube+2IcavityItubecos(2πΔnLλ),
λm=2ΔnL(2m+1),
Δλλ2ΔnL
dλmdT=22m+1[(dntubedTdncavitydT)L+(ntubencavity)dLdT].
dλmdT=λm(κtubeκcavityntubencavity+α).
dλmdTλm(κcavityntubencavity).

Metrics