Abstract

A novel all-fiber sensing configuration for simultaneous measurements of temperature and strain based on the up-taper Mach–Zehnder interferometer (MZI) with an in-line embedded fiber Bragg grating (FBG) is proposed and experimentally demonstrated. This configuration consists of two up-tapers fabricated by an excessive fusion splicing method and a short segment of inscribed FBG. Due to the different responses of the up-taper MZI and the FBG to the uniform variation of temperature and strain, the simultaneous measurement for these two variables could be achieved by real-time monitoring the transmission spectrum. For 0.01 nm wavelength resolution, a resolution of 0.311°C in temperature can be achieved, and the average strain resolution is 10.07 με.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  4. V. Bhatia, “Applications of long-period gratings to single and multi-parameter sensing,” Opt. Express 4, 457–466 (1999).
    [CrossRef]
  5. K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006).
    [CrossRef]
  6. Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
    [CrossRef]
  7. T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
    [CrossRef]
  8. J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
    [CrossRef]
  9. Q. Wang, G. Farrell, and W. Yan, “Investigation on single-mode multimode single-mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [CrossRef]
  10. B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17, 22296–22302 (2009).
    [CrossRef]
  11. B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
    [CrossRef]
  12. D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures,” J. Lightwave Technol. 30, 805–810 (2012).
    [CrossRef]
  13. T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
    [CrossRef]
  14. B. B. Gu, W. L. Qi, J. Zheng, Y. Y. Zhou, P. P. Shum, and F. Luan, “Simple and compact reflective refractometer based on tilted fiber Bragg grating inscribed in thin-core fiber,” Opt. Lett. 39, 22–25 (2014).
    [CrossRef]
  15. W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
    [CrossRef]
  16. X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
    [CrossRef]
  17. D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers,” Appl. Opt. 47, 1668–1672 (2008).
    [CrossRef]
  18. Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
    [CrossRef]
  19. B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010).
    [CrossRef]

2014

2013

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

2012

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
[CrossRef]

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two peanut-shape structures,” J. Lightwave Technol. 30, 805–810 (2012).
[CrossRef]

2011

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

2010

2009

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

B. B. Gu, M. J. Yin, A. P. Zhang, J. W. Qian, and S. L. He, “Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer,” Opt. Express 17, 22296–22302 (2009).
[CrossRef]

2008

2006

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006).
[CrossRef]

2005

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

1999

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1996

Albert, J.

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bang, O.

B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
[CrossRef]

Bhatia, V.

Bi, M. H.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Cao, Z.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Chen, Q. H.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

Chiang, K. S.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Deng, M.

Dong, B.

Dong, X. Y.

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

Farrell, G.

Feng, T.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gu, B. B.

Hao, J. Z.

He, S.

B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
[CrossRef]

He, S. L.

Hu, W. S.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Ji, X.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Jian, W.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Jiang, L.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kieu, K. Q.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lan, X.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Leblanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Li, B. Y.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

Li, J.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Liaw, C. Y.

Lin, B.

Lit, J. W. Y.

Liu, W. K.

Loock, H. P.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Luan, F.

Mansuripur, M.

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006).
[CrossRef]

Ning, T. G.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Pei, L.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qi, T.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Qi, W. L.

Qian, J. W.

Shao, L. Y.

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

Shi, J.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Shui, T.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Shum, P. P.

Tian, Z.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Tjin, S. C.

Vengsarkar, A. M.

Wang, Q.

Wang, R.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Wang, S. M.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

Wei, L.

Wei, T.

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Wen, X. D.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Wu, D.

Xiao, H.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

Xiao, S. L.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Xu, F.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

Yan, W.

Yang, J. P.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

Yi, L. L.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Yin, M. J.

You, H. D.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

Yu, B.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Yuan, W.

B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
[CrossRef]

Zhang, A. P.

Zhang, Z.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

Zhao, Z.

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

Zheng, J.

Zhou, D. P.

Zhou, W. J.

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

Zhou, Y.

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

Zhou, Y. Y.

Zhu, T.

Appl. Opt.

Appl. Phys. Lett.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86, 151122 (2005).
[CrossRef]

IEEE Photon. J.

J. P. Yang, L. Jiang, S. M. Wang, Q. H. Chen, B. Y. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photon. J. 3, 1189–1197 (2011).
[CrossRef]

W. J. Zhou, Y. Zhou, X. Y. Dong, L. Y. Shao, and J. Albert, “Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer,” IEEE Photon. J. 4, 1051–1057 (2012).
[CrossRef]

T. Qi, S. L. Xiao, J. Shi, L. L. Yi, Z. Zhao, M. H. Bi, and W. S. Hu, “Cladding-mode backward recoupling based displacement sensor incorporating fiber up taper and Bragg grating,” IEEE Photon. J. 5, 7100608 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

X. D. Wen, T. G. Ning, H. D. You, J. Li, T. Feng, L. Pei, and W. Jian, “Dumbbell shaped Mach–Zehnder interferometer with high sensitivity of refractive index,” IEEE Photon. Technol. Lett. 25, 1839–1842 (2013).
[CrossRef]

K. Q. Kieu and M. Mansuripur, “Biconical fiber taper sensors,” IEEE Photon. Technol. Lett. 18, 2239–2241 (2006).
[CrossRef]

Z. Tian, S. S. H. Yam, and H. P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008).
[CrossRef]

T. Wei, X. Lan, and H. Xiao, “Fiber inline core-cladding-mode Mach–Zehnder interferometer fabricated by two-point CO2 laser irradiations,” IEEE Photon. Technol. Lett. 21, 669–671 (2009).
[CrossRef]

IEEE Sens. J.

Z. Cao, X. Ji, R. Wang, Z. Zhang, T. Shui, F. Xu, and B. Yu, “A compact fiber sensor with high spatial resolution for simultaneous strain and temperature measurement,” IEEE Sens. J. 13, 1447–1451 (2013).
[CrossRef]

B. B. Gu, W. Yuan, S. He, and O. Bang, “Temperature compensated strain sensor based on cascaded Sagnac interferometers and all-solid birefringent hybrid photonic crystal fibers,” IEEE Sens. J. 12, 1641–1646 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the up-taper MZI-based sensor with embedded FBG and (b) microscopic images of the up-tapers shown in the fusion splicer screen.

Fig. 2.
Fig. 2.

Typical transmission spectrum of the proposed sensor. The labeled dip A is employed for tracking the wavelength shift of the MZI.

Fig. 3.
Fig. 3.

FSR as a function of the distance between the two up-tapers. The black squares are measured from the experiment and the red solid line is obtained from curve fitting.

Fig. 4.
Fig. 4.

Schematic representation of the experimental setup.

Fig. 5.
Fig. 5.

Spectrum response of MZI and FBG to the loaded strain. The inset shows the partial enlarged drawing from the range of 1554.5–1556.5 nm.

Fig. 6.
Fig. 6.

Resonant wavelength shifts of the up-taper-based MZI and FBG as a function of strain.

Fig. 7.
Fig. 7.

Spectrum response of the up-taper-based MZI and FBG to temperature.

Fig. 8.
Fig. 8.

Resonant wavelength shifts of the up-taper-based MZI and FBG as a function of temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ΔλMZIΔλFBG]=[Kε,MZIKT,MZIKε,FBGKT,FBG][ΔεΔT],
[ΔεΔT]=1M[KT,FBGKT,MZIKε,FBGKε,MZI][ΔλMZIΔλFBG],
[ΔεΔT]=163.456[3330.90.741.23][ΔλMZIΔλFBG].

Metrics