Abstract

An electrically modulated diffraction grating has been demonstrated in poled polymer thin films containing the organic nonlinear optical chromophore, PYR-3 (2-{3-Cyano-4-[3-(1-decyl-1 H-pyridin-4-ylidene)-propenyl]-5,5-dimethy l-5 H-furan-2-ylidene}-malononitrile), and amorphous polycarbonate. A dc electric field induced change in the diffraction efficiency of up to 9% was observed. The diffraction efficiency modulation was likely due to an electric field induced change in the film thickness via a piezoelectric effect rather than via an electronic linear electro-optic effect.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dalton, “Nonlinear optical polymeric materials: from chromophore design to commercial application,” in Polymers for Photonic Applications I, Advances in Polymer Science, K. S. Lee, ed. (Springer-Verlag, 2002), pp. 1–86.
  2. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
    [CrossRef]
  3. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
    [CrossRef]
  4. A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
    [CrossRef]
  5. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
    [CrossRef]
  6. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
    [CrossRef]
  7. Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
    [CrossRef]
  8. A. Galvan-Gonzalez, M. Canva, G. I. Stegeman, R. Twieg, T. C. Kowalczyk, and H. S. Lackritz, “Effect of temperature and atmospheric environment on the photodegradation of some Disperse Red 1-type polymers,” Opt. Lett. 24, 1741–1743 (1999).
    [CrossRef]
  9. G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
    [CrossRef]
  10. G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
    [CrossRef]
  11. S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
    [CrossRef]
  12. S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
    [CrossRef]
  13. S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
    [CrossRef]
  14. T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
    [CrossRef]
  15. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
    [CrossRef]
  16. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  17. R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
    [CrossRef]
  18. Ch. Bosshard, K. Sutter, R. Schlesser, and P. Giinter, “Electro-optic effects in molecular crystals,” J. Opt. Soc. Am. B 10, 867–885 (1993).
    [CrossRef]
  19. A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
    [CrossRef]
  20. A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
    [CrossRef]
  21. J. W. Quilty and G. V. M. Williams, “Tunable Bragg gratings in polymer thin films,” Mater. Sci. Forum 700, 158–161 (2012).
    [CrossRef]
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  23. R. Magnuson and T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” J. Opt. Soc. Am. 67, 1165–1170 (1977).
    [CrossRef]
  24. W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, 2008).

2012

J. W. Quilty and G. V. M. Williams, “Tunable Bragg gratings in polymer thin films,” Mater. Sci. Forum 700, 158–161 (2012).
[CrossRef]

2011

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

2009

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

2008

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[CrossRef]

2007

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

2006

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23, 1822–1835 (2006).
[CrossRef]

2005

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

2004

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

2000

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

1999

1997

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

1995

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

1993

1977

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Asselberghs, I.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Benner, A. F.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

Bhuiyan, M. D. H.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Bosshard, Ch.

Canva, M.

Chen, A.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Clays, K.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

Dalton, L.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

L. Dalton, “Nonlinear optical polymeric materials: from chromophore design to commercial application,” in Polymers for Photonic Applications I, Advances in Polymer Science, K. S. Lee, ed. (Springer-Verlag, 2002), pp. 1–86.

Dalton, L. R.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Denton, N.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

Do, M. T. T.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

Do, My. T. T.

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

Escuti, M. J.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[CrossRef]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Galvan-Gonzalez, A.

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Gaudin, O. P. M.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Gaylord, T. K.

Giinter, P.

Günter, P.

Gupta, G.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

Haller, M.

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Hattori, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Hau, S.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Hayden, L. M.

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Heywang, W.

W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, 2008).

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Ignatowski, M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

Janssens, S.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

Jen, A. K. Y.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Jen, A. K.-Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Juen, A. K.-Y.

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Ka, J. W.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Kainoa, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Kash, J. A.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

Kay, A. J.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

Khan, R. U. A.

Kim, T. D.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Komanduri, R. K.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[CrossRef]

Kowalczyk, T. C.

Kuchta, D. M.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

Kutuvantavida, Y.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

Lackritz, H. S.

Leahy, M. R.

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Liao, Y.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

Lochocki, B.

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

Lubitz, K.

W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, 2008).

Luo, J.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Magnuson, R.

Neis, M.

Oh, C.

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Onodera, S.

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Pyajt, A.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Quilty, J. W.

J. W. Quilty and G. V. M. Williams, “Tunable Bragg gratings in polymer thin films,” Mater. Sci. Forum 700, 158–161 (2012).
[CrossRef]

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

Raymond, S. G.

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

Richardson, S.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Ritter, M. B.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

Ruiz, B.

Samue, I. D. W.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Schlesser, R.

Schneider, A.

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Shi, Z.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Shibata, T.

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

Sinyukov, A. M.

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Smith, G. J.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

Stegeman, G. I.

Steier, W. H.

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Stillhart, M.

Sun, H.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Sutter, K.

Teshome, A.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

Tucker, N. M.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Turnbull, G. A.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

Twieg, R.

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

Wersing, W.

W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, 2008).

Williams, G. V. M.

J. W. Quilty and G. V. M. Williams, “Tunable Bragg gratings in polymer thin films,” Mater. Sci. Forum 700, 158–161 (2012).
[CrossRef]

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

Woodhouse, A. D.

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

Woolhouse, A. D.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

Zhou, Y.

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Adv. Funct. Mater.

Z. Shi, S. Hau, J. Luo, T. D. Kim, N. M. Tucker, J. W. Ka, H. Sun, A. Pyajt, L. Dalton, A. Chen, and A. K. Y. Jen, “Highly efficient Diels–Alder crosslinkable electro-optic dendrimers for electric-field sensors,” Adv. Funct. Mater. 17, 2557–2563 (2007).
[CrossRef]

Appl. Phys. Lett.

S. Richardson, O. P. M. Gaudin, G. A. Turnbull, and I. D. W. Samue, “Improved operational lifetime of semiconducting polymer lasers by encapsulation,” Appl. Phys. Lett. 91, 261104 (2007).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67, 2588–2590 (1995).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110  GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997).
[CrossRef]

A. M. Sinyukov, M. R. Leahy, L. M. Hayden, M. Haller, J. Luo, A. K.-Y. Juen, and L. R. Dalton, “Resonance enhanced THz generation in electro-optic polymers near the absorption maximum,” Appl. Phys. Lett. 85, 5827–5829 (2004).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IBM J. Res. Dev.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Dev. 49, 755–775 (2005).
[CrossRef]

J. Appl. Phys.

T. Hattori, T. Shibata, S. Onodera, and T. Kainoa, “Fabrication of refractive index grating into azo-dye-containing polymer films by irreversible photoinduced bleaching,” J. Appl. Phys. 87, 3240–3244 (2000).
[CrossRef]

G. V. M. Williams, Y. Kutuvantavida, S. Janssens, S. G. Raymond, M. T. T. Do, M. D. H. Bhuiyan, J. W. Quilty, N. Denton, and A. J. Kay, “The effects of excited state lifetime, optical intensity, and excited state quenchers on the photostability of zwitterionic chromophores,” J. Appl. Phys. 110, 083524 (2011).
[CrossRef]

S. G. Raymond, G. V. M. Williams, B. Lochocki, M. D. H. Bhuiyan, A. J. Kay, and J. W. Quilty, “The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores,” J. Appl. Phys. 105, 113123 (2009).
[CrossRef]

J. Mater. Chem.

A. J. Kay, A. D. Woodhouse, Y. Zhou, and K. Clays, “Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore,” J. Mater. Chem. 14, 1321–1330 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Chem. C

G. Gupta, W. H. Steier, Y. Liao, J. Luo, L. R. Dalton, and A. K.-Y. Jen, “Modeling photobleaching of optical chromophores: light-intensity effects in precise trimming of integrated polymer devices,” J. Phys. Chem. C 112, 8051–8060 (2008).
[CrossRef]

Mater. Sci. Forum

J. W. Quilty and G. V. M. Williams, “Tunable Bragg gratings in polymer thin films,” Mater. Sci. Forum 700, 158–161 (2012).
[CrossRef]

Opt. Lett.

Opt. Mater.

A. Teshome, A. J. Kay, A. D. Woolhouse, K. Clays, I. Asselberghs, and G. J. Smith, “Strategies for optimizing the second-order nonlinear optical response in zwitterionic merocyannine dyes,” Opt. Mater. 31, 575–582 (2009).
[CrossRef]

Proc. SPIE

S. G. Raymond, G. V. M. Williams, My. T. T. Do, S. Janssens, B. Lochocki, M. D. H. Bhuiyan, and A. J. Kay, “Photoluminescence and optical studies of photodegradation in nonlinear optical organic chromophores,” Proc. SPIE 7354, 735408 (2009).
[CrossRef]

R. K. Komanduri, C. Oh, and M. J. Escuti, “Reflective liquid crystal polarization gratings with high efficiency and small pitch,” Proc. SPIE 7050, 70500J (2008).
[CrossRef]

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005).
[CrossRef]

Other

W. Heywang, K. Lubitz, and W. Wersing, Piezoelectricity: Evolution and Future of a Technology (Springer-Verlag, 2008).

L. Dalton, “Nonlinear optical polymeric materials: from chromophore design to commercial application,” in Polymers for Photonic Applications I, Advances in Polymer Science, K. S. Lee, ed. (Springer-Verlag, 2002), pp. 1–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for probing the diffraction grating. Image shows the function generator (FG), high voltage power supply (HVPS), photodiodes (PDs), laser, attenuator, polarizer, and sample with a gold coated block electrode, chromophore/polymer film, and an ITO electrode on a glass substrate. The chopper was used for some measurements where it provided the reference frequency for the lock-in amplifier.

Fig. 2.
Fig. 2.

Plot of the magnitude of Δη(E)/η(0) against the dc electric field for a 6.06 μm 5% PYR-3/APC film at 760 nm. The line is a linear fit to the data.

Fig. 3.
Fig. 3.

(a) Plot of the magnitude of Δη(E)/η(0) against the ac electric field for a 6.00 μm 5% PYR-3/APC film at 760 nm with f=1kHz. The line is a linear fit to the data. (b) Plot of |ΔI0(E)/I0(0)| for a 6.00 μm 5% PYR-3/APC film at 760 nm with f=1kHz (open circles). Also shown is |Δη(E)/η(0)| from (a) (filled circles).

Fig. 4.
Fig. 4.

Plot of |Δη(E)/η(0)| as a function of frequency for a 6.00 μm thick 5% PYR-3/APC film at 760 nm and 0.82V/μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ηT=(π(Δn/2)dλcos(ϑ))2,
η(π(Δn/2)2dλcos(ϑ))2,
δn(E)=n03r13E/2,
Δη(E)η(0)n03r13EΔn(0)+14(n03r13EΔn(0))2,
ΔI0(E)/I0(0)2Δη(E),
ΔI0(E)/I0(0)=Δη/η.

Metrics