Abstract

A novel full-range Fourier domain Doppler optical coherence tomography (full-range FD-DOCT) using sinusoidal phase modulation for B-M scan is proposed. In this sinusoidal B-M scan, zero optical path difference (OPD) position does not move corresponding to lateral scanning points in contrast to linear B-M scan. Since high phase sensitivity arises around the zero OPD position, the proposed full-range FD-DOCT can achieve easily high velocity sensitivity without mirror image around the zero OPD position. Velocity sensitivity dependent on the OPD and the interval of scanning points is examined, and flow velocity detection capability is verified through Doppler imaging of a flow phantom and an in vivo biological sample.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. J.-H. Han, X. Liu, J. U. Kang, and C. G. Song, “High-resolution subsurface articular cartilage imaging based on Fourier-domain common-path optical coherence tomography,” Chin. Opt. Lett. 8, 167–169 (2010).
    [CrossRef]
  3. L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).
  4. X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
    [CrossRef]
  5. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
    [CrossRef]
  6. T. Wang, Y. Yang, and Q. Zhu, “A three-parameter logistic model to characterize ovarian tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4, 772–777 (2013).
    [CrossRef]
  7. E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).
  8. T. Wu and Y. Liu, “Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography,” Chin. Opt. Lett. 11, 021702 (2013).
  9. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
    [CrossRef]
  10. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
    [CrossRef]
  11. L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
    [CrossRef]
  12. M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
    [CrossRef]
  13. A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
    [CrossRef]
  14. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [CrossRef]
  15. C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).
  16. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3  μm,” Opt. Express 13, 3931–3944 (2005).
    [CrossRef]
  17. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17, 4166–4176 (2009).
    [CrossRef]
  18. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  19. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
    [CrossRef]
  20. P. Meemon, K.-S. Lee, and J. P. Rolland, “Doppler imaging with dual-detection full-range frequency domain optical coherence tomography,” Biomed. Opt. Express 1, 537–552 (2010).
    [CrossRef]
  21. Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3 × 3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47, 2004–2010 (2008).
    [CrossRef]
  22. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef]
  23. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
    [CrossRef]
  24. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [CrossRef]
  25. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
    [CrossRef]
  26. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
    [CrossRef]
  27. C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).
  28. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  29. L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
    [CrossRef]
  30. P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. Pure Appl. Opt. 9, 422–426 (2007).
  31. F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt. Express 18, 1358–1372 (2010).
    [CrossRef]
  32. S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1  μm spectral-domain optical coherence tomography,” Proc. SPIE 7168, 716808 (2009).
  33. M. Zhang, L. Ma, and P. Yu, “Dual-band Fourier domain optical coherence tomography with depth-related compensations,” Biomed. Opt. Express 5, 167–182 (2014).
    [CrossRef]
  34. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  35. X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
    [CrossRef]
  36. J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15, 12636–12653 (2007).
    [CrossRef]
  37. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31, 927–929 (2006).
    [CrossRef]

2014 (1)

2013 (4)

T. Wang, Y. Yang, and Q. Zhu, “A three-parameter logistic model to characterize ovarian tissue using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 4, 772–777 (2013).
[CrossRef]

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

T. Wu and Y. Liu, “Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography,” Chin. Opt. Lett. 11, 021702 (2013).

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

2012 (3)

L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
[CrossRef]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

2011 (4)

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).

2010 (5)

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

J.-H. Han, X. Liu, J. U. Kang, and C. G. Song, “High-resolution subsurface articular cartilage imaging based on Fourier-domain common-path optical coherence tomography,” Chin. Opt. Lett. 8, 167–169 (2010).
[CrossRef]

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt. Express 18, 1358–1372 (2010).
[CrossRef]

P. Meemon, K.-S. Lee, and J. P. Rolland, “Doppler imaging with dual-detection full-range frequency domain optical coherence tomography,” Biomed. Opt. Express 1, 537–552 (2010).
[CrossRef]

2009 (2)

S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1  μm spectral-domain optical coherence tomography,” Proc. SPIE 7168, 716808 (2009).

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17, 4166–4176 (2009).
[CrossRef]

2008 (1)

2007 (7)

2006 (2)

2005 (1)

2004 (1)

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (1)

1999 (1)

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

1997 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

An, L.

L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
[CrossRef]

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
[CrossRef]

Aoki, G.

Bajraszewski, T.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

Baumann, B.

Bouma, B.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

Bu, P.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. Pure Appl. Opt. 9, 422–426 (2007).

Cense, B.

Chai, X.

Chang, S.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, Z.

Cobb, M. J.

Dai, C.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

de Boer, J.

de Boer, J. F.

Endo, T.

Fabritius, T.

S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1  μm spectral-domain optical coherence tomography,” Proc. SPIE 7168, 716808 (2009).

Fan, S.

Fercher, A.

Fercher, A. F.

Fingler, J.

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Flueraru, C.

Fraser, S. E.

Fujimoto, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gargesha, M.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Gnanadesigan, M.

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

Gorczynska, I.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Gu, S.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Han, J.-H.

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hitzenberger, C.

Hitzenberger, C. K.

Hu, J.

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, X.

Itoh, M.

Izatt, J. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

Jaillon, F.

Jenkins, M. W.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Jiao, S.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
[CrossRef]

Johnstone, M.

L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
[CrossRef]

Kang, J. U.

Kimel, S.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Knighton, R. W.

Kolbitsch, C.

Kowalczyk, A.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

Lasser, T.

Lee, K.-S.

Leitgeb, R.

Leitgeb, R. A.

Li, X.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Liu, X.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

J.-H. Han, X. Liu, J. U. Kang, and C. G. Song, “High-resolution subsurface articular cartilage imaging based on Fourier-domain common-path optical coherence tomography,” Chin. Opt. Lett. 8, 167–169 (2010).
[CrossRef]

Liu, Y.

Ma, L.

M. Zhang, L. Ma, and P. Yu, “Dual-band Fourier domain optical coherence tomography with depth-related compensations,” Biomed. Opt. Express 5, 167–182 (2014).
[CrossRef]

L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).

MacDonald, D. J.

Major, A.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Makita, S.

Malekafzali, A.

Mao, Y.

Mee, S.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Meemon, P.

Michaely, R.

Milner, T. E.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

Mujat, M.

Nelson, J. S.

Park, B.

Peterson, L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Pierce, M. C.

Pircher, M.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Puliafito, C. A.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
[CrossRef]

Regar, E.

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

Ren, H.

Ren, Q.

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

Rolland, J. P.

Rollins, A. M.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Sasaki, O.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. Pure Appl. Opt. 9, 422–426 (2007).

Saxer, C.

Schmoll, T.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Schwartz, D.

Sekhar, S. C.

Sherif, S.

Smithies, D. J.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Song, C. G.

Srinivas, S.

Srinivas, S. M.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Subhash, H. M.

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

Sun, T.

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Szkulmowski, M.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

Targowski, P.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

Tearney, G.

Van der Steen, A. F. W.

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

van Gemert, M. J. C.

van Soest, G.

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

Wang, R. K.

L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
[CrossRef]

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
[CrossRef]

Wang, T.

Wang, X.

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. Pure Appl. Opt. 9, 422–426 (2007).

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997).
[CrossRef]

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

Watanabe, M.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Wilson, D. L.

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

Wojtkowski, M.

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

Wu, T.

Xi, P.

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

Xiang, S.

Yabusaki, M.

Yang, C.

Yang, Y.

Yasuno, Y.

Yatagai, T.

Yu, P.

M. Zhang, L. Ma, and P. Yu, “Dual-band Fourier domain optical coherence tomography with depth-related compensations,” Biomed. Opt. Express 5, 167–182 (2014).
[CrossRef]

L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).

Yun, S.-H.

Zhang, H. F.

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

Zhang, M.

M. Zhang, L. Ma, and P. Yu, “Dual-band Fourier domain optical coherence tomography with depth-related compensations,” Biomed. Opt. Express 5, 167–182 (2014).
[CrossRef]

L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).

Zhang, X.

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
[CrossRef]

Zhao, Y.

Zhongping, C.

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Zhou, C.

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

Zhu, Q.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Biomed. Opt. Express (3)

Chin. Opt. Lett. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Major, S. Kimel, S. Mee, T. E. Milner, D. J. Smithies, S. M. Srinivas, C. Zhongping, and J. S. Nelson, “Microvascular photodynamic effects determined in vivo using optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5, 1168–1175 (1999).
[CrossRef]

Investig. Opthalmal. Vis. Sci. (1)

C. Dai, X. Liu, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Absolute retinal blood flow measurement with a dual-beam Doppler optical coherence tomography,” Investig. Opthalmal. Vis. Sci. 54, 7998–8003 (2013).

J. Am. Coll. Cardiol. Cardiovasc. Interv. (1)

E. Regar, M. Gnanadesigan, A. F. W. Van der Steen, and G. van Soest, “Quantitative optical coherence tomography tissue-type imaging for lipid-core plaque detection,” J. Am. Coll. Cardiol. Cardiovasc. Interv. 6, 891–892 (2013).

J. Biomed. Opt. (5)

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt. 17, 030502 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt. 16, 080504 (2011).
[CrossRef]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef]

L. An, M. Johnstone, and R. K. Wang, “Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects,” J. Biomed. Opt. 17, 116018 (2012).
[CrossRef]

M. W. Jenkins, L. Peterson, S. Gu, M. Gargesha, D. L. Wilson, M. Watanabe, and A. M. Rollins, “Measuring hemodynamics in the developing heart tube with four-dimensional gated Doppler optical coherence tomography,” J. Biomed. Opt. 15, 066022 (2010).
[CrossRef]

J. Opt. (1)

L. An, H. M. Subhash, and R. K. Wang, “Full range complex spectral domain optical coherence tomography for volumetric imaging at 47 000 A-scans per second,” J. Opt. 12, 084003 (2010).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

P. Bu, X. Wang, and O. Sasaki, “Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry,” J. Opt. Pure Appl. Opt. 9, 422–426 (2007).

Opt. Commun. (1)

P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczyńska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229, 79–84 (2004).
[CrossRef]

Opt. Express (8)

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express 20, 6109–6115 (2012).
[CrossRef]

F. Jaillon, S. Makita, M. Yabusaki, and Y. Yasuno, “Parabolic BM-scan technique for full range Doppler spectral domain optical coherence tomography,” Opt. Express 18, 1358–1372 (2010).
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

X. Zhang, J. Hu, R. W. Knighton, X. Huang, C. A. Puliafito, and S. Jiao, “Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer,” Opt. Express 19, 19653–19659 (2011).
[CrossRef]

J. Fingler, D. Schwartz, C. Yang, and S. E. Fraser, “Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography,” Opt. Express 15, 12636–12653 (2007).
[CrossRef]

B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3  μm,” Opt. Express 13, 3931–3944 (2005).
[CrossRef]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17, 4166–4176 (2009).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (3)

C. Dai, C. Zhou, S. Jiao, P. Xi, and Q. Ren, “In-vivo full depth of eye imaging spectral domain optical coherence tomography,” Proc. SPIE 8135, 81351I (2011).

S. Makita, T. Fabritius, and Y. Yasuno, “Blood flow imaging at deep posterior human eye using 1  μm spectral-domain optical coherence tomography,” Proc. SPIE 7168, 716808 (2009).

L. Ma, M. Zhang, and P. Yu, “Imaging site-specific peptide-targeting in tumor tissues using spectral-domain optical coherence tomography,” Proc. SPIE 7890, 78900V (2011).

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Time chart of sinusoidal B-M scan method.

Fig. 2.
Fig. 2.

Spatial frequency spectrum function from detected interference signal F(k,ω).

Fig. 3.
Fig. 3.

Schematic of full-range FD-DOCT system.

Fig. 4.
Fig. 4.

A-line image of a mirror with conventional (red) and full-range (blue) DOCT.

Fig. 5.
Fig. 5.

Phase stability versus OPD in the full-range DOCT and conventional DOCT.

Fig. 6.
Fig. 6.

(a) Tomogram of a gel mixed with milk. (b) Standard deviation of the averaged phase differences versus the fraction of Δx/d. The average phase difference was calculated within the yellow dashed box in (a).

Fig. 7.
Fig. 7.

Images of flow phantom: (a) structure and (b) Doppler image by the full-range DOCT. (c) Structure and (d) Doppler image by conventional DOCT. The scale bar is 200 μm.

Fig. 8.
Fig. 8.

Images of mouse ear in vivo: (a) structure and (b) blood flow Doppler image by the full-range DOCT. (c) Structure and (d) blood flow Doppler image by conventional DOCT. A, auricular cartilage; E, epidermis; B, blood vessel. The scale bar is 200 μm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I(k,t)=I0(k)+2nS(k)RSnRRcos(ϕn+zcos(ωct+θ)),
I(k,t)=I0(k)+2nS(k)RSnRR×{J0(z)2J1(z)cos(ωct+θ)sin(ϕn)+2J2(z)cos[2(ωct+θ)]cos(ϕn)2J3(z)cos[3(ωct+θ)]sin(ϕn)+2J4(z)cos[4(ωct+θ)]cos(ϕn)}.
F(k,ω)=It{I(k,t)}=I0(k)δ(ω)+m=(1)mJ(z2m)exp(i2mθ)δ(ω2mωc)It(nBncosϕn(t))+m=(1)mJ(z2m+1)exp(i(2m+1)θ)δ(ω(2m+1)ωc)It(nBnsinϕn(t)),
It{nBnsinϕn(t)}=F1(k,ωωc)J1(z)exp(iθ),It{nBncosϕn(t)}=F2(k,ω2ωc)J2(z)exp(i2θ).
I˜(k,t)=nBncosϕn(t)jnBnsinϕn(t).
F1(k,ωc)=B1sin(ϕ1)J1(z)exp(iθ),F3(k,3ωc)=B1sin(ϕ1)J3(z)exp(iθ)
R13=J1(z)/J3(z)=|F1(k,ωc)|/|F3(k,3ωc)|.
z(λ)=z0λλ0.
I˜(z,t)=Ik1{I˜(k,t)}=Ik1{2nS(k)RSnRRexp(jϕn(t))}=n2Γ(z2(zn+vnt))RSnRRexp(j2k0(z(zn+vnt))),
Δϕi,j=tan1{Im[a=ii+Mb=jj+NI˜a+1,bI˜a,b*]Re[a=ii+Mb=jj+NI˜a+1,bI˜a,b*]},
Vi,j=λ0Δϕi,j4πnRTcosθ,
Vmin=λ0Δϕmin4πnT.
Δϕmin=σphase=σΔϕ2+σΔx2,
σΔϕ=(SNR)1/2,
σΔx=4π3(1exp(2(Δxd)2)),

Metrics