Abstract

We have demonstrated laser frequency offset locking via the Rb87 tripod-type double-dark resonances electromagnetically induced transparency (EIT) system. The influence of coupling fields’ power and detuning on the tripod-type EIT profile is studied in detail. In a wide coupling field’s detuning range, the narrower EIT dip has an ultranarrow linewidth of 590kHz, which is about one order narrower than the natural linewidth of Rb87. Without the additional frequency stabilization of the coupling lasers, we achieve the relative frequency fluctuation of 60 kHz in a long time of 2000s, which is narrower than the short-time linewidth of each individual laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef]
  2. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
    [CrossRef]
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  4. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 25, 1732–1734 (2000).
    [CrossRef]
  5. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
    [CrossRef]
  6. J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
    [CrossRef]
  7. Y. Chen, Z. Tsai, Y. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005).
    [CrossRef]
  8. Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
    [CrossRef]
  9. Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
    [CrossRef]
  10. Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
    [CrossRef]
  11. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
    [CrossRef]
  12. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
    [CrossRef]
  13. I. H. Bea, H. S. Moon, M. K. Kim, L. Lee, and J. B. Kim, “Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell,” Appl. Opt. 47, 4849–4855 (2008).
    [CrossRef]
  14. I. H. Bea, H. S. Moon, M. K. Kim, L. Lee, and J. B. Kim, “Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell,” Opt. Express 18, 1389–1397 (2010).
    [CrossRef]
  15. A. Yang, C. Yan, J. Tian, C. Wang, G. Li, and D. Zhang, “An analog of double electromagnetically induced transparency with extremely high group indexes,” Chin. Opt. Lett. 11, 051602 (2013).
    [CrossRef]
  16. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
  17. J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
    [CrossRef]
  18. J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
    [CrossRef]
  19. T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
    [CrossRef]
  20. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47, 5163–5166 (2008).
    [CrossRef]
  21. F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett. 35, 3853–3855 (2010).
    [CrossRef]
  22. K. Numata, J. R. Chen, S. T. Wu, J. B. Abshire, and M. A. Krainak, “Frequency stabilization of distributed-feedback laser diodes at 1572  nm for lidar measurements of atmospheric carbon dioxide,” Appl. Opt. 50, 1047–1056 (2011).
    [CrossRef]
  23. K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.
  24. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  25. M. Britzger, D. Friedrich, S. Kroker, F. Brükner, O. Burmeister, E. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, “Pound-Drever-Hall error signals for the length control of three-port grating coupled cavities,” Appl. Opt. 50, 4340–4346 (2011).
    [CrossRef]
  26. Z. Bian, C. Huang, D. Chen, J. Peng, M. Gao, Z. Dong, J. Liu, H. Cai, R. Qu, and S. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
    [CrossRef]
  27. M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
    [CrossRef]
  28. G. Puentes, “Laser frequency offset locking scheme for high-field imaging of cold atoms,” Appl. Phys. B 107, 11–16 (2012).
    [CrossRef]
  29. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001–3003 (2004).
    [CrossRef]
  30. S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
    [CrossRef]
  31. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
    [CrossRef]
  32. Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
    [CrossRef]
  33. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
    [CrossRef]
  34. A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
    [CrossRef]

2014 (2)

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

2013 (3)

A. Yang, C. Yan, J. Tian, C. Wang, G. Li, and D. Zhang, “An analog of double electromagnetically induced transparency with extremely high group indexes,” Chin. Opt. Lett. 11, 051602 (2013).
[CrossRef]

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

2012 (2)

2011 (2)

2010 (3)

2009 (1)

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

2008 (3)

2007 (2)

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

2006 (1)

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

2005 (3)

2004 (1)

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001–3003 (2004).
[CrossRef]

2000 (1)

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

1991 (2)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

1985 (1)

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1982 (1)

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Abel, R. P.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Abshire, J. B.

Adams, C. S.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Bason, M. G.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Bea, I. H.

Bell, S. C.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Bian, Z.

Britzger, M.

Brükner, F.

Burkett, W. H.

Burmeister, O.

Cai, H.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

Z. Bian, C. Huang, D. Chen, J. Peng, M. Gao, Z. Dong, J. Liu, H. Cai, R. Qu, and S. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett. 35, 3853–3855 (2010).
[CrossRef]

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Chen, D.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

Z. Bian, C. Huang, D. Chen, J. Peng, M. Gao, Z. Dong, J. Liu, H. Cai, R. Qu, and S. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett. 35, 3853–3855 (2010).
[CrossRef]

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Chen, J. R.

Chen, Y.

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Y. Chen, Z. Tsai, Y. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005).
[CrossRef]

Chu, S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Close, J. D.

J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47, 5163–5166 (2008).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Danzmann, K.

Debs, J. E.

Dong, Z.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fang, Z.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Friedrich, D.

Gao, M.

Gea-Banacloche, J.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Gong, S.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

Z. Bian, C. Huang, D. Chen, J. Peng, M. Gao, Z. Dong, J. Liu, H. Cai, R. Qu, and S. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
[CrossRef]

Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Goorskey, D. J.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Heywood, D. M.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Huang, C.

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Jagatap, B. N.

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

Jin, L.

Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Kasapi, S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Kasevich, M.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Kim, J. B.

Kim, K.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001–3003 (2004).
[CrossRef]

Kim, M. K.

Kley, E.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Krainak, M. A.

Kroker, S.

Kruger, M. B.

Lance, A.

Lee, L.

Li, G.

Li, R.

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Liang, X.

Liu, J.

Liu, Y.

Lukin, M. D.

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

Machida, S.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Manohar, K. G.

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

Metcalf, H.

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Metcalf, H. J.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

Mohapatra, A. K.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Moler, K.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Moon, H. S.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Niu, Y.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Noguchi, Y.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Numata, K.

Peng, J.

Peng, Y.

Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Phillips, W. D.

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Pradhan, S.

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

Pritchard, J. D.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Prodan, J. V.

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

Puentes, G.

G. Puentes, “Laser frequency offset locking scheme for high-field imaging of cold atoms,” Appl. Phys. B 107, 11–16 (2012).
[CrossRef]

Qu, R.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

Z. Bian, C. Huang, D. Chen, J. Peng, M. Gao, Z. Dong, J. Liu, H. Cai, R. Qu, and S. Gong, “Seed laser frequency stabilization for Doppler wind lidar,” Chin. Opt. Lett. 10, 091405 (2012).
[CrossRef]

F. Wei, D. Chen, Z. Fang, H. Cai, and R. Qu, “Modulation-free frequency stabilization of external-cavity diode laser based on a phase-difference biased Sagnac interferometer,” Opt. Lett. 35, 3853–3855 (2010).
[CrossRef]

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Raitzsch, U.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Ray, A.

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

Riis, E.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Robins, N. P.

Saito, S.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Schnabel, R.

Scholten, R. E.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Scully, M. O.

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

Sheng, J.

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

Thompson, J. D.

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

Tian, J.

Tiecke, T. G.

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

Tsai, Z.

Tünnermann, A.

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

Vuletic, V.

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

Wang, C.

A. Yang, C. Yan, J. Tian, C. Wang, G. Li, and D. Zhang, “An analog of double electromagnetically induced transparency with extremely high group indexes,” Chin. Opt. Lett. 11, 051602 (2013).
[CrossRef]

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Wang, H.

Wang, S.

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Weatherill, K. J.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Wei, F.

Weiss, D. S.

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

White, J. D.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Wu, H.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

Wu, S. T.

Xiao, M.

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 25, 1732–1734 (2000).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Xu, Z.

Yamamoto, Y.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Yan, C.

Yanagawa, T.

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Yang, A.

Ying, K.

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system,” J. Opt. Soc. Am. B 31, 144–148 (2014).
[CrossRef]

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.

Yu, I. A.

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

Y. Chen, Z. Tsai, Y. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005).
[CrossRef]

Zhang, D.

Zibrov, A. S.

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

G. Puentes, “Laser frequency offset locking scheme for high-field imaging of cold atoms,” Appl. Phys. B 107, 11–16 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001–3003 (2004).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

T. Yanagawa, S. Saito, S. Machida, Y. Yamamoto, and Y. Noguchi, “Frequency stabilization of an InGaAsP distributed feedback laser to an NH3 absorption line at 15137 A˙ with an external frequency modulator,” Appl. Phys. Lett. 47, 1036–1038 (1985).
[CrossRef]

Chin. Opt. Lett. (2)

J. Mod. Opt. (2)

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature,” J. Mod. Opt. 61, 322–327 (2014).
[CrossRef]

Y. Peng, L. Jin, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

A. Ray, S. Pradhan, K. G. Manohar, and B. N. Jagatap, “Frequency stabilization of a diode laser using electromagnetically induced transparency in a V-configuration cesium atom,” Laser Phys. 17, 1353–1360 (2007).
[CrossRef]

Laser Phys. Lett. (1)

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

Y. Chen, C. Wang, S. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

J. V. Prodan, W. D. Phillips, and H. Metcalf, “Laser production of a very slow monoenergetic atomic beam,” Phys. Rev. Lett. 49, 1149–1153 (1982).
[CrossRef]

J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Coherence and Raman sideband cooling of a single atom in an optical tweezer,” Phys. Rev. Lett. 110, 133001 (2013).
[CrossRef]

M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, “Atomic velocity selection using stimulated Raman transitions,” Phys. Rev. Lett. 66, 2297–2300 (1991).
[CrossRef]

Other (3)

K. Ying, D. Chen, H. Cai, and R. Qu, “Frequency stabilization of a DFB laser to molecular cesium at 852  nm by polarization-rotated optical feedback,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.87.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Observation of multi-electromagnetically induced transparency in V-type rubidium atoms,” J. Mod. Opt., doi: 10.1080/09500340.2014.904019 (accepted).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Relevant energy levels of Rb87 for our experiment.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup: PB1–PB4, polarizing cubic beam splitters; HWP1–HWP3, half-wave plates; QWP1 and QWP2, quarter-wave plates; AOM, acoustic optical modulator; PD, photodiode detector; OI, optical isolator; M, mini-reflective mirror reflecting coupling beam 2; LIA, lock-in amplifier; and LO, local oscillator.

Fig. 3.
Fig. 3.

Two transparency windows induced by the double-dark resonances EIT system: the right window (Δp=Δ2) is much narrower than the left one (Δp=Δ1) as E2=0.49mW is weaker than E1=10mW. (The x axis is calibrated using SAS and the tuning coefficient of the probe laser.)

Fig. 4.
Fig. 4.

Narrower EIT linewidth versus power of coupling beams: (a) E2=0.49mW; (b) E1=10mW; (c) Ωp=2π×0.1MHz, Ω2=2π×0.9MHz, Δ1=2π×3MHz, and Δ2=+2π×3MHz; and (d) Ωp=2π×0.1MHz, Ω1=2π×4MHz, Δ1=2π×3MHz, and Δ2=+2π×3MHz.

Fig. 5.
Fig. 5.

Narrower EIT linewidth versus coupling beams’ detuning with E1=10mW and E2=0.49mW. (Different color in the figure corresponds to different scale of EIT linewidth.)

Fig. 6.
Fig. 6.

Error signal of the ultranarrow EIT dip.

Fig. 7.
Fig. 7.

Relative frequency stability in a long time under different conditions.

Fig. 8.
Fig. 8.

Frequency noise spectral density under different conditions.

Metrics