Abstract

The performance of optical coatings may be negatively affected by the deleterious effects of mechanical stress. In this work, we propose an optimization tool for the design of optical filters taking into account both the optical and mechanical properties of the substrate and of the individual deposited layers. The proposed method has been implemented as a supplemental module in the OpenFilters open source design software. It has been experimentally validated by fabricating multilayer stacks using e-beam evaporation, in combination with their mechanical stress assessment performed as a function of temperature. Two different stress-compensation strategies were evaluated: (a) design of two complementary coatings on either side of the substrate and (b) implementing the mechanical properties of the individual materials in the design of the optical coating on one side only. This approach has been tested by the manufacture of a Fabry–Perot etalon used in astronomy while using evaporated SiO2 and TiO2 films. We found that the substrate curvature can be decreased by 85% and 49% for the first and second strategies, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, J. W. Arkwright, and D. I. Farrant, “Distortion induced effects on the finesse of high-performance large-aperture Fabry–Perot etalon filters,” Opt. Express 14, 5994–6000 (2006).
    [CrossRef]
  2. H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
    [CrossRef]
  3. F. Lemarquis, “Athermal compensation of the stress-induced surface deflection of optical coatings using iso-admittance layers,” Appl. Opt. 53, A229–A236 (2014).
    [CrossRef]
  4. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).
  5. C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).
  6. J. Bland-Hawthorn, “Tunable imaging filters and scientific applications,” in Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices (Astronomical Society of the Pacific, 2000), pp. 34–57.
  7. Y. P. Georgelin and P. Amram, “A review of Fabry and Perot discoveries,” in 3D Optical Spectroscopic Methods in Astronomy, G. Compte and M. Marcelin, eds. (Astronomical Society of the Pacific, 1995), pp. 382–394.
  8. G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1986).
  9. R. Koch, “Stress in evaporated and sputtered thin films—a comparison,” Surf. Coat. Technol. 204, 1973–1982 (2010).
    [CrossRef]
  10. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
    [CrossRef]
  11. G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 207–229.
  12. R. Abermann, “Measurement of the intrinsic stress in thin metal films,” Vacuum 41, 1279–1282 (1990).
    [CrossRef]
  13. H. Windischmann, “Intrinsic stress in sputter deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17, 547–596 (1992).
    [CrossRef]
  14. H. Windischmann, “An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering,” J. Appl. Phys. 62, 1800–1807 (1987).
    [CrossRef]
  15. W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
    [CrossRef]
  16. R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
    [CrossRef]
  17. J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
    [CrossRef]
  18. S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
    [CrossRef]
  19. J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt. 43, 2670–2679 (2004).
    [CrossRef]
  20. B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).
  21. P. B. Barna and M. Adamik, “Growth mechanism of polycrystalline thin films,” in Science and Technology of Thin Films, F. C. Mattacotta and G. Ottaviani, eds. (World Scientific, 1995), Chap. 1, pp. 1–28.
  22. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
    [CrossRef]
  23. K.-H. Müller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
    [CrossRef]
  24. D. W. Hoffman, “Modification of evaporated chromium by concurrent ion bombardment,” J. Vac. Sci. Technol. 17, 425–428 (1980).
    [CrossRef]
  25. G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046–1055 (1994).
    [CrossRef]
  26. D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105–1114 (1988).
    [CrossRef]
  27. G. G. Stoney, “Tension of electro-deposited films,” Proc. R. Soc. Lond. 82, 172–175 (1909).
    [CrossRef]
  28. S. Michel, “Vers une détermination optique directe des coefficients opto-mécaniques et thermo-optiques des couches minces optiques,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille, 2008).
  29. E. Çetinörgu, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering,” Appl. Opt. 48, 4536–4544 (2009).
    [CrossRef]
  30. C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
    [CrossRef]
  31. C. Mahodaux, “Les contraintes dans les materiaux dielectriques en couche mince: empilements, evolution avec le recuit et l’implantation ionique,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille III, 1999).
  32. J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
    [CrossRef]
  33. S. Larouche and L. Martinu, “OpenFilters: open source software for the design, optimization and synthesis of optical filters,” Appl. Opt. 47, C219–C230 (2008).
    [CrossRef]
  34. A. Tikhonravov, M. K. Trubetskov, and G. W. de Bell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
    [CrossRef]
  35. A. Tikhonravov, “A method of synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ. Fiz. Astronomiya 23, 91–93 (1982).
  36. P. Baumeister, “Design of multilayer filters by successive approximations,” J. Opt. Soc. Am. 48, 955–958 (1958).
    [CrossRef]
  37. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces,” Ann. Phys. 5, 596–640, 706–784 (1950).
  38. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
    [CrossRef]
  39. S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).
  40. K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994).
    [CrossRef]
  41. M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
    [CrossRef]
  42. M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
    [CrossRef]
  43. J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
    [CrossRef]
  44. T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.
  45. L. I. Epstein, “Improvements in heat-reflecting filters,” J. Opt. Soc. Am. 45, 360–362 (1955).
    [CrossRef]
  46. A. F. Turner and P. W. Baumeister, “Multilayers mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5, 69–76 (1966).
    [CrossRef]
  47. J. Mouchart, “Thin film optical coatings, 5: buffer layer theory,” Appl. Opt. 17, 72–75 (1978).
    [CrossRef]
  48. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 31, 3821–3835 (1992).
    [CrossRef]
  49. E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
    [CrossRef]
  50. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
    [CrossRef]

2014 (1)

2012 (1)

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

2010 (1)

R. Koch, “Stress in evaporated and sputtered thin films—a comparison,” Surf. Coat. Technol. 204, 1973–1982 (2010).
[CrossRef]

2009 (1)

2008 (4)

S. Larouche and L. Martinu, “OpenFilters: open source software for the design, optimization and synthesis of optical filters,” Appl. Opt. 47, C219–C230 (2008).
[CrossRef]

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

2007 (1)

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

2006 (2)

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

J. Zhang, J. W. Arkwright, and D. I. Farrant, “Distortion induced effects on the finesse of high-performance large-aperture Fabry–Perot etalon filters,” Opt. Express 14, 5994–6000 (2006).
[CrossRef]

2005 (2)

W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
[CrossRef]

R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
[CrossRef]

2004 (2)

2003 (1)

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

2001 (1)

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

1999 (2)

J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
[CrossRef]

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

1997 (1)

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

1996 (1)

1995 (2)

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
[CrossRef]

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

1994 (2)

G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046–1055 (1994).
[CrossRef]

K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994).
[CrossRef]

1992 (2)

1990 (1)

R. Abermann, “Measurement of the intrinsic stress in thin metal films,” Vacuum 41, 1279–1282 (1990).
[CrossRef]

1988 (1)

D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105–1114 (1988).
[CrossRef]

1987 (1)

H. Windischmann, “An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering,” J. Appl. Phys. 62, 1800–1807 (1987).
[CrossRef]

1986 (1)

K.-H. Müller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

1982 (1)

A. Tikhonravov, “A method of synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ. Fiz. Astronomiya 23, 91–93 (1982).

1980 (2)

D. W. Hoffman, “Modification of evaporated chromium by concurrent ion bombardment,” J. Vac. Sci. Technol. 17, 425–428 (1980).
[CrossRef]

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[CrossRef]

1978 (1)

1969 (1)

B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).

1966 (1)

1958 (1)

1955 (1)

1950 (1)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces,” Ann. Phys. 5, 596–640, 706–784 (1950).

1909 (1)

G. G. Stoney, “Tension of electro-deposited films,” Proc. R. Soc. Lond. 82, 172–175 (1909).
[CrossRef]

1902 (1)

C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).

Abelès, F.

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces,” Ann. Phys. 5, 596–640, 706–784 (1950).

Abel-Tibérini, L.

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

Abermann, R.

R. Abermann, “Measurement of the intrinsic stress in thin metal films,” Vacuum 41, 1279–1282 (1990).
[CrossRef]

Adamik, M.

P. B. Barna and M. Adamik, “Growth mechanism of polycrystalline thin films,” in Science and Technology of Thin Films, F. C. Mattacotta and G. Ottaviani, eds. (World Scientific, 1995), Chap. 1, pp. 1–28.

Amram, P.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Y. P. Georgelin and P. Amram, “A review of Fabry and Perot discoveries,” in 3D Optical Spectroscopic Methods in Astronomy, G. Compte and M. Marcelin, eds. (Astronomical Society of the Pacific, 1995), pp. 382–394.

Arkwright, J. W.

Atanassov, G.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Balard, P.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Balkowski, C.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Baloukas, B.

Barna, P. B.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

P. B. Barna and M. Adamik, “Growth mechanism of polycrystalline thin films,” in Science and Technology of Thin Films, F. C. Mattacotta and G. Ottaviani, eds. (World Scientific, 1995), Chap. 1, pp. 1–28.

Baumeister, P.

Baumeister, P. W.

Begou, T. C.

T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.

Blacker, R.

Bland-Hawthorn, J.

J. Bland-Hawthorn, “Tunable imaging filters and scientific applications,” in Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices (Astronomical Society of the Pacific, 2000), pp. 34–57.

Boissin, O.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Boulesteix, J.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Bower, A. F.

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

Carignan, C.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

Carter, G.

G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046–1055 (1994).
[CrossRef]

Çetinörgu, E.

Chason, E.

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Chien, C.-H.

W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
[CrossRef]

Christova, K. K.

K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994).
[CrossRef]

Court, N.

Dai, Y. S.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Daigle, O.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Das, A. K.

R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
[CrossRef]

de Bell, G. W.

de Denus-Baillargeon, M.-M.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

De Gryse, R.

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

Demchishin, W. V.

B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).

Depla, D.

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

Dligatch, S.

Dobrowolski, J. A.

Épinat, B.

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Epstein, L. I.

Escoubas, L.

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

Fabry, C.

C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).

Farrant, D. I.

Floro, J. A.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Fu, J. K.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Gach, J.-L.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Georgelin, Y. P.

Y. P. Georgelin and P. Amram, “A review of Fabry and Perot discoveries,” in 3D Optical Spectroscopic Methods in Astronomy, G. Compte and M. Marcelin, eds. (Astronomical Society of the Pacific, 1995), pp. 382–394.

Ghekiere, P.

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

Giovannini, H.

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

Greene, J. E.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

Gross, M.

Guo, X.-J.

W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
[CrossRef]

Han, J.-M.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Han, J.-W.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Hand, R. D.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Hearne, S. J.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Hecquet, C.

T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.

Hernandez, G.

G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1986).

Hernandez, O.

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Hirsch, E. H.

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[CrossRef]

Hoffman, D. W.

D. W. Hoffman, “Modification of evaporated chromium by concurrent ion bombardment,” J. Vac. Sci. Technol. 17, 425–428 (1980).
[CrossRef]

Hu, D.

R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
[CrossRef]

Hultman, L.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

Hunter, J. A.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Hwangbo, D. K.

S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).

Kim, B.-Y.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Kim, J. S.

J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
[CrossRef]

Kim, J.-H.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Kim, S.-H.

S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).

Kim, Y.-H.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Klemberg-Sapieha, J. E.

Klinger, R.

Koch, R.

R. Koch, “Stress in evaporated and sputtered thin films—a comparison,” Surf. Coat. Technol. 204, 1973–1982 (2010).
[CrossRef]

R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
[CrossRef]

Kotula, P.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Kozlov, A.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Kupinski, P.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Lambropoulos, J. C.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Larouche, S.

Lemarchand, F.

T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.

Lemarquis, F.

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Lequime, M.

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.

Liu, W.-J.

W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
[CrossRef]

Mahieu, S.

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

Mahodaux, C.

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

C. Mahodaux, “Les contraintes dans les materiaux dielectriques en couche mince: empilements, evolution avec le recuit et l’implantation ionique,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille III, 1999).

Manov, A. H.

K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994).
[CrossRef]

Marcelin, M.

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Martin, P. J.

Martinu, L.

Mattox, D. M.

D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105–1114 (1988).
[CrossRef]

McEldowney, S.

Michel, S.

S. Michel, “Vers une détermination optique directe des coefficients opto-mécaniques et thermo-optiques des couches minces optiques,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille, 2008).

Moretti, P.

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

Morton, D.

Mouchart, J.

Movchan, B. A.

B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).

Müller, K.-H.

K.-H. Müller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

Netterfield, R. P.

Oberste-Berghaus, J.

Oh, S. H.

J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
[CrossRef]

Oliver, J. B.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Paik, K. W.

J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
[CrossRef]

Papernov, S.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Park, Y.-P.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Perot, A.

C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).

Petrov, I.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

Rigatti, A. L.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Rigaud, F.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Rigneault, H.

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Sadkhin, G.

Schmid, A. W.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Seel, S. C.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Seo, D.-S.

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Sheldon, B. W.

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

Smith, C.

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

Stevenson, I.

Stoney, G. G.

G. G. Stoney, “Tension of electro-deposited films,” Proc. R. Soc. Lond. 82, 172–175 (1909).
[CrossRef]

Strauss, G. N.

G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 207–229.

Sullivan, B. T.

Takashashi, H.

Tello, J.

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

Thompson, C. V.

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

Tikhonravov, A.

A. Tikhonravov, M. K. Trubetskov, and G. W. de Bell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef]

A. Tikhonravov, “A method of synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ. Fiz. Astronomiya 23, 91–93 (1982).

Trubetskov, M. K.

Turlo, J.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Turner, A. F.

Vallée, P.

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Windischmann, H.

H. Windischmann, “Intrinsic stress in sputter deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17, 547–596 (1992).
[CrossRef]

H. Windischmann, “An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering,” J. Appl. Phys. 62, 1800–1807 (1987).
[CrossRef]

Woo, S.-H.

S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).

Zabeida, O.

Zhang, J.

Ann. Phys. (1)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés. Applications aux couches minces,” Ann. Phys. 5, 596–640, 706–784 (1950).

Appl. Opt. (9)

E. Çetinörgu, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering,” Appl. Opt. 48, 4536–4544 (2009).
[CrossRef]

S. Larouche and L. Martinu, “OpenFilters: open source software for the design, optimization and synthesis of optical filters,” Appl. Opt. 47, C219–C230 (2008).
[CrossRef]

A. Tikhonravov, M. K. Trubetskov, and G. W. de Bell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35, 5493–5508 (1996).
[CrossRef]

H. Takashashi, “Temperature stability of thin-film narrow-bandpass filters produced by ion-assisted deposition,” Appl. Opt. 34, 667–675 (1995).
[CrossRef]

F. Lemarquis, “Athermal compensation of the stress-induced surface deflection of optical coatings using iso-admittance layers,” Appl. Opt. 53, A229–A236 (2014).
[CrossRef]

J. E. Klemberg-Sapieha, J. Oberste-Berghaus, L. Martinu, R. Blacker, I. Stevenson, G. Sadkhin, D. Morton, S. McEldowney, R. Klinger, P. J. Martin, N. Court, S. Dligatch, M. Gross, and R. P. Netterfield, “Mechanical characteristics of optical coatings prepared by various techniques: a comparative study,” Appl. Opt. 43, 2670–2679 (2004).
[CrossRef]

A. F. Turner and P. W. Baumeister, “Multilayers mirrors with high reflectance over an extended spectral region,” Appl. Opt. 5, 69–76 (1966).
[CrossRef]

J. Mouchart, “Thin film optical coatings, 5: buffer layer theory,” Appl. Opt. 17, 72–75 (1978).
[CrossRef]

B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 31, 3821–3835 (1992).
[CrossRef]

Astrophys. J. (1)

C. Fabry and A. Perot, “Measures of absolute wave-lengths in the solar spectrum and the spectrum of iron,” Astrophys. J. 7, 115–144 (1902).

Crit. Rev. Solid State Mater. Sci. (1)

H. Windischmann, “Intrinsic stress in sputter deposited thin films,” Crit. Rev. Solid State Mater. Sci. 17, 547–596 (1992).
[CrossRef]

Int. J. Electron. (1)

K. K. Christova and A. H. Manov, “Mechanical stress and refractive index variation in dry SiO2,” Int. J. Electron. 76, 913–916 (1994).
[CrossRef]

J. Appl. Phys. (5)

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

H. Windischmann, “An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering,” J. Appl. Phys. 62, 1800–1807 (1987).
[CrossRef]

J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer–Weber thin films,” J. Appl. Phys. 89, 4886–4897 (2001).
[CrossRef]

J. S. Kim, K. W. Paik, and S. H. Oh, “The multilayer-modified Stoney’s formula for laminated polymer composites on a silicon substrate,” J. Appl. Phys. 86, 5474–5479 (1999).
[CrossRef]

K.-H. Müller, “Model for ion-assisted thin-film densification,” J. Appl. Phys. 59, 2803–2807 (1986).
[CrossRef]

J. Korean Phys. Soc. (1)

S.-H. Woo, S.-H. Kim, and D. K. Hwangbo, “Optical and structural properties of TiO2 and MgF2 thin films by plasma ion-assisted deposition,” J. Korean Phys. Soc. 45, 99–107 (2004).

J. Opt. Soc. Am. (2)

J. Phys. D (2)

G. Carter, “Peening in ion-assisted thin-film deposition: a generalized model,” J. Phys. D 27, 1046–1055 (1994).
[CrossRef]

E. H. Hirsch, “Stress in porous thin films through adsorption of polar molecules,” J. Phys. D 13, 2081–2094 (1980).
[CrossRef]

J. Vac. Sci. Technol. (1)

D. W. Hoffman, “Modification of evaporated chromium by concurrent ion bombardment,” J. Vac. Sci. Technol. 17, 425–428 (1980).
[CrossRef]

J. Vac. Sci. Technol. A (2)

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” J. Vac. Sci. Technol. A 21, S117–S128 (2003).
[CrossRef]

D. M. Mattox, “Particle bombardment effects on thin-film deposition: a review,” J. Vac. Sci. Technol. A 7, 1105–1114 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J.-W. Han, J.-M. Han, B.-Y. Kim, Y.-H. Kim, J.-H. Kim, D.-S. Seo, and Y.-P. Park, “Study on compensation of thermal stress in the fabrication process of thin-film transistor,” Jpn. J. Appl. Phys. 47, 2238–2240 (2008).
[CrossRef]

Microsc. Microanal. Microstruct. (1)

C. Mahodaux, H. Rigneault, H. Giovannini, L. Escoubas, and P. Moretti, “Mechanical properties of optical dielectric thin films deposited by the ion plating technique,” Microsc. Microanal. Microstruct. 8, 251–260 (1997).
[CrossRef]

Opt. Express (2)

J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20, 16595–16610 (2012).

J. Zhang, J. W. Arkwright, and D. I. Farrant, “Distortion induced effects on the finesse of high-performance large-aperture Fabry–Perot etalon filters,” Opt. Express 14, 5994–6000 (2006).
[CrossRef]

Phys. Met. Metallogr. (1)

B. A. Movchan and W. V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Met. Metallogr. 28, 83–90 (1969).

Phys. Rev. Lett. (2)

R. Koch, D. Hu, and A. K. Das, “Compressive stress in polycrystalline Volmer–Weber films,” Phys. Rev. Lett. 94, 146101 (2005).
[CrossRef]

J. Tello, A. F. Bower, E. Chason, and B. W. Sheldon, “Kinetic model of stress evolution during coalescence and growth of polycrystalline thin films,” Phys. Rev. Lett. 98, 216104 (2007).
[CrossRef]

Proc. R. Soc. Lond. (1)

G. G. Stoney, “Tension of electro-deposited films,” Proc. R. Soc. Lond. 82, 172–175 (1909).
[CrossRef]

Proc. SPIE (2)

M.-M. de Denus-Baillargeon, L. Abel-Tibérini, M. Lequime, C. Carignan, B. Épinat, J.-L. Gach, O. Hernandez, and M. Marcelin, “Developing high-performance reflective coatings for the tunable filter and the high-order interferometer of the 3D-NTT,” Proc. SPIE 7013, 70133N (2008).
[CrossRef]

M. Marcelin, P. Amram, P. Balard, C. Balkowski, O. Boissin, J. Boulesteix, C. Carignan, O. Daigle, M.-M. de Denus-Baillargeon, B. Épinat, J.-L. Gach, O. Hernandez, F. Rigaud, and P. Vallée, “3D-NTT: a versatile integral field spectro-imager for the NTT,” Proc. SPIE 7014, 701455 (2008).
[CrossRef]

Surf. Coat. Technol. (2)

W.-J. Liu, X.-J. Guo, and C.-H. Chien, “The study of optical and microstructural evolution of Ta2O5 and SiO2 thin films by plasma ion assisted deposition method,” Surf. Coat. Technol. 196, 69–75 (2005).
[CrossRef]

R. Koch, “Stress in evaporated and sputtered thin films—a comparison,” Surf. Coat. Technol. 204, 1973–1982 (2010).
[CrossRef]

Thin Solid Films (2)

S. Mahieu, P. Ghekiere, D. Depla, and R. De Gryse, “Biaxial alignment in sputter deposited thin films,” Thin Solid Films 515, 1229–1249 (2006).
[CrossRef]

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion-assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Vacuum (1)

R. Abermann, “Measurement of the intrinsic stress in thin metal films,” Vacuum 41, 1279–1282 (1990).
[CrossRef]

Vestn. Mosk. Univ. Fiz. Astronomiya (1)

A. Tikhonravov, “A method of synthesis of optical coatings using optimality conditions,” Vestn. Mosk. Univ. Fiz. Astronomiya 23, 91–93 (1982).

Other (8)

C. Mahodaux, “Les contraintes dans les materiaux dielectriques en couche mince: empilements, evolution avec le recuit et l’implantation ionique,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille III, 1999).

S. Michel, “Vers une détermination optique directe des coefficients opto-mécaniques et thermo-optiques des couches minces optiques,” Ph.D. thesis (Université Paul-Cézanne Aix-Marseille, 2008).

P. B. Barna and M. Adamik, “Growth mechanism of polycrystalline thin films,” in Science and Technology of Thin Films, F. C. Mattacotta and G. Ottaviani, eds. (World Scientific, 1995), Chap. 1, pp. 1–28.

G. N. Strauss, “Mechanical stress in optical coatings,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer, 2003), pp. 207–229.

J. Bland-Hawthorn, “Tunable imaging filters and scientific applications,” in Imaging the Universe in Three Dimensions: Astrophysics with Advanced Multi-Wavelength Imaging Devices (Astronomical Society of the Pacific, 2000), pp. 34–57.

Y. P. Georgelin and P. Amram, “A review of Fabry and Perot discoveries,” in 3D Optical Spectroscopic Methods in Astronomy, G. Compte and M. Marcelin, eds. (Astronomical Society of the Pacific, 1995), pp. 382–394.

G. Hernandez, Fabry–Perot Interferometers (Cambridge University, 1986).

T. C. Begou, C. Hecquet, F. Lemarchand, and M. Lequime, “All dielectric broadband mirror for Fabry–Perot interferometer,” in Optical Interference Coatings Postdeadline, M. Tilsch and D. Ristau, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper PTE.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Stress versus temperature for coatings on a c-Si wafer: sample flushed under dry nitrogen flow with two temperature cycles from +20°C to +100°C (each temperature rise/fall). A humidity evacuation period can be observed on the preliminary phase of the test (flushed under dry nitrogen for 1 h at room temperature) and the first heating period.

Fig. 2.
Fig. 2.

Schematic representation of the multilayer stacks deposited for the two adopted strategies. In strategy (a), the reflective multilayer stack (coating A) was first deposited followed by an AR stack (coating B); in strategy (b) only a reflective coating is deposited (coating C).

Fig. 3.
Fig. 3.

Reflection and transmission of a multilayer stack compensated on the substrate backside by an AR coating.

Fig. 4.
Fig. 4.

Reflection and transmission of a multilayer stack with stress compensation.

Fig. 5.
Fig. 5.

Stress versus temperature for films deposited on c-Si wafer. Data in solid line with markers are the actual measurements performed on the samples, while the thick solid lines of the same color without data points are the expected stresses as modeled by OpenFilters.

Fig. 6.
Fig. 6.

Stress versus temperature for an optical design with stress compensation (coating C).

Fig. 7.
Fig. 7.

Stress recorded in situ during the deposition process. The stress oscillates as the two materials with opposing stress values are deposited.

Tables (3)

Tables Icon

Table 1. Mechanical Properties of the Substrates

Tables Icon

Table 2. Mechanical and Optical Properties of the Deposited Materials

Tables Icon

Table 3. Characteristics of the Designs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1Fe=1FR2+1Fsd2+1Fc2,
Fc=M2
σf=16REsds2(1νs)df,
σT=Ef1νf(αsαf)ΔT,
1R=6(1νs)Esds2(σ1d1+σ2d2+σndn),
ζ(α)=1Nj=1N[fλj(α)f^λjΔfλj]2,
ζ(α)=1Nj=1N[fxj(α)f^xjΔfxj]2,
di(1R)=6(1νs)Esds2σi,σi(1R)=6(1νs)Esds2di.
a(HL)Ab(HL)B[]c(HL)C[]d(HL)De(HL)E,

Metrics