Abstract

In this paper we present a novel method to reliably strip the unwanted cladding light in high-power fiber lasers. Soft metals are utilized to fabricate a high-power cladding light stripper (CLS). The capability of indium (In), aluminum (Al), tin (Sn), and gold (Au) in extracting unwanted cladding light is examined. The experiments show that these metals have the right features for stripping the unwanted light out of the cladding. We also find that the metal–cladding contact area is of great importance because it determines the attenuation and the thermal load on the CLS. These metals are examined in different forms to optimize the contact area to have the highest possible attenuation and avoid localized heating. The results show that sheets of indium are very effective in stripping unwanted cladding light.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kilowatt-level cladding light stripper for high-power fiber laser

Ping Yan, Junyi Sun, Yusheng Huang, Dan Li, Xuejiao Wang, Qirong Xiao, and Mali Gong
Appl. Opt. 56(7) 1935-1939 (2017)

High power cladding light stripper using segmented corrosion method: theoretical and experimental studies

Lu Yin, Mingjian Yan, Zhigang Han, Hailin Wang, Hua Shen, and Rihong Zhu
Opt. Express 25(8) 8760-8776 (2017)

CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers

Keiron Boyd, Nikita Simakov, Alexander Hemming, Jae Daniel, Robert Swain, Eric Mies, Simon Rees, W. Andrew Clarkson, and John Haub
Appl. Opt. 55(11) 2915-2920 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription