Abstract

Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a super-resolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
    [CrossRef]
  2. S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
    [CrossRef]
  3. S. Young and R. Driggers, “Superresolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
    [CrossRef]
  4. G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
    [CrossRef]
  5. S. Chaundhuri, Super-Resolution Imaging (Springer, 2001).
  6. C. Epp, E. Robinson, and T. Brady, “Autonomous landing and hazard avoidance technology,” in Proceedings of IEEE Aerospace Conference (2008), pp. 659–665.
  7. S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
    [CrossRef]
  8. S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
    [CrossRef]
  9. F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
    [CrossRef]
  10. J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
    [CrossRef]
  11. Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.
  12. G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
    [CrossRef]
  13. E. Armstrong and R. Richmond, “The application inverse filter to 3-D Microscanning of LADAR Imagery,” in Proceedings of IEEE Aerospace Conference, Big Sky, Montana (2006).
  14. B. Lucas and T. Kanade, “An iterative image registration technique with application to stereo vision,” in Proceedings of Imaging Understanding Workshop (1981), pp. 121–130.
  15. D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
    [CrossRef]
  16. A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
    [CrossRef]
  17. G. Bauer, D. Cornick, and R. Stevenson, “Capabilities and applications of the program to optimize simulated trajectories (post),” in (1977).
  18. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).
  19. V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

2010 (2)

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

2009 (3)

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

2007 (2)

G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

2006 (1)

2005 (1)

G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
[CrossRef]

2004 (1)

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

2003 (1)

S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Amzajerdian, F.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Armbruster, W.

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

Armstrong, E.

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

E. Armstrong and R. Richmond, “The application inverse filter to 3-D Microscanning of LADAR Imagery,” in Proceedings of IEEE Aerospace Conference, Big Sky, Montana (2006).

Barnes, B.

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Bauer, G.

G. Bauer, D. Cornick, and R. Stevenson, “Capabilities and applications of the program to optimize simulated trajectories (post),” in (1977).

Bertero, M.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

Boccacci, P.

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

Brady, T.

C. Epp, E. Robinson, and T. Brady, “Autonomous landing and hazard avoidance technology,” in Proceedings of IEEE Aerospace Conference (2008), pp. 659–665.

Brewster, P.

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Bulyshev, A.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Busch, G.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

Chaundhuri, S.

S. Chaundhuri, Super-Resolution Imaging (Springer, 2001).

Chen, W.

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Clement, G.

G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
[CrossRef]

Cornick, D.

G. Bauer, D. Cornick, and R. Stevenson, “Capabilities and applications of the program to optimize simulated trajectories (post),” in (1977).

Davis, J.

Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

Driggers, R.

Eastman, R.

G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

Eland, M.

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

Epp, C.

C. Epp, E. Robinson, and T. Brady, “Autonomous landing and hazard avoidance technology,” in Proceedings of IEEE Aerospace Conference (2008), pp. 659–665.

Estes, R.

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

Farsiu, S.

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

He, X.

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Hong, T.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

Hu, S.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Huttunen, J.

G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
[CrossRef]

Hynynen, K.

G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
[CrossRef]

Kanade, T.

B. Lucas and T. Kanade, “An iterative image registration technique with application to stereo vision,” in Proceedings of Imaging Understanding Workshop (1981), pp. 121–130.

Kang, M.

S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Kempton, K.

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Krapels, K.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Lucas, B.

B. Lucas and T. Kanade, “An iterative image registration technique with application to stereo vision,” in Proceedings of Imaging Understanding Workshop (1981), pp. 121–130.

Malinfar, P.

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

Meadows, B.

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

Miller, B.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Nguyen, O.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Nister, D.

Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

Noe, A.

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

Park, M. K.

S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Park, S.

S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

Pierrottet, D.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

Qin, F.

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Reisse, R.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Reynolds, J.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Richmond, R.

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

E. Armstrong and R. Richmond, “The application inverse filter to 3-D Microscanning of LADAR Imagery,” in Proceedings of IEEE Aerospace Conference, Big Sky, Montana (2006).

Roback, V.

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

Robinson, E.

C. Epp, E. Robinson, and T. Brady, “Autonomous landing and hazard avoidance technology,” in Proceedings of IEEE Aerospace Conference (2008), pp. 659–665.

Robinson, M. D.

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

Rosenbush, G.

G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

Stevenson, R.

G. Bauer, D. Cornick, and R. Stevenson, “Capabilities and applications of the program to optimize simulated trajectories (post),” in (1977).

Thomas, J.

S. Hu, S. S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super resolution for flash LADAR imagery,” Appl. Opt. 49, 772–780 (2010).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Vanek, M.

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

Woods, J.

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

Wu, W.

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Yang, Q.

Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

Yang, R.

Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

Yang, X.

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Young, S.

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

S. Young and R. Driggers, “Superresolution image reconstruction from a sequence of aliased imagery,” Appl. Opt. 45, 5073–5085 (2006).
[CrossRef]

Young, S. S.

Appl. Opt. (2)

IEEE Signal Process. Mag. (1)

S. Park, M. K. Park, and M. Kang, “Superresolution image reconstruction: a technical review,” IEEE Signal Process. Mag. 20, 21–36 (2003).
[CrossRef]

IEEE Trans. Image Process. (1)

S. Farsiu, M. D. Robinson, M. Eland, and P. Malinfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13, 1327–1344 (2004).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. Clement, J. Huttunen, and K. Hynynen, “Superresolution ultrasound imaging using back-projection reconstruction,” J. Acoust. Soc. Am. 118, 3953–3960 (2005).
[CrossRef]

J. Electron. Imaging (1)

F. Qin, X. He, W. Chen, X. Yang, and W. Wu, “Video superresolution reconstruction based on subpixel registration and iterative back projection,” J. Electron. Imaging 18, 013008 (2009).
[CrossRef]

Proc. SPIE (5)

J. Woods, E. Armstrong, W. Armbruster, and R. Richmond, “The application of iterative closest point (ICP) registration to improve 3-D terrain mapping estimates using the flash 3-D ladar system,” Proc. SPIE 7684, 76840N (2010).
[CrossRef]

G. Rosenbush, T. Hong, and R. Eastman, “Super-resolution enhancement of flash LADAR range data,” Proc. SPIE 6736, 673614 (2007).
[CrossRef]

D. Pierrottet, F. Amzajerdian, B. Meadows, R. Estes, and A. Noe, “Characterization of 3-d imaging lidar for hazard avoidance and autonomous landing on the moon,” Proc. SPIE 6550, 655008 (2007).
[CrossRef]

A. Bulyshev, D. Pierrottet, F. Amzajerdian, G. Busch, M. Vanek, and R. Reisse, “Processing of 3-dimensional LIDAR terrain images generated from an airborne platform,” Proc. SPIE 7329, 73290I (2009).
[CrossRef]

S. Hu, S. Young, T. Hong, J. Reynolds, K. Krapels, B. Miller, J. Thomas, and O. Nguyen, “Super-resolution for flash LADAR data,” Proc. SPIE 7300, 73000B (2009).
[CrossRef]

Other (8)

G. Bauer, D. Cornick, and R. Stevenson, “Capabilities and applications of the program to optimize simulated trajectories (post),” in (1977).

M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).

V. Roback, A. Bulyshev, F. Amzajerdian, P. Brewster, B. Barnes, K. Kempton, and R. Reisse, “Helicopter flight test of a compact, real-time 3-D flash lidar for imaging hazardous terrain during planetary landing,” in Proceedings of AIAA Space 2013 Conference and Exhibition, San Diego, California (2013), p. 5383.

E. Armstrong and R. Richmond, “The application inverse filter to 3-D Microscanning of LADAR Imagery,” in Proceedings of IEEE Aerospace Conference, Big Sky, Montana (2006).

B. Lucas and T. Kanade, “An iterative image registration technique with application to stereo vision,” in Proceedings of Imaging Understanding Workshop (1981), pp. 121–130.

Q. Yang, R. Yang, J. Davis, and D. Nister, “Spatial-depth super resolution for range images,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2007), pp. 1–8.

S. Chaundhuri, Super-Resolution Imaging (Springer, 2001).

C. Epp, E. Robinson, and T. Brady, “Autonomous landing and hazard avoidance technology,” in Proceedings of IEEE Aerospace Conference (2008), pp. 659–665.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Schematic of a flash lidar sensor.

Fig. 2.
Fig. 2.

Flash lidar model environment.

Fig. 3.
Fig. 3.

Projection of the FOV on a chosen reference flat plane for one detector.

Fig. 4.
Fig. 4.

Geometry of the backprojection algorithm. The fine-grid index k1 is different from k due to the finite size of elevation.

Fig. 5.
Fig. 5.

Video navigation algorithm for determining the flash lidar position and orientation relative to the target.

Fig. 6.
Fig. 6.

“Flat” model.

Fig. 7.
Fig. 7.

DEM restoration for case of 90° look-angle trajectory (zero degree angle of incidence): (a) image of the first frame, (b) restored DEM using only one frame, and (c) restored image using 30 frames.

Fig. 8.
Fig. 8.

Magnified central region of the flat model and restored DEM: (a) true DEM, (b) DEM restored using one frame, and (c) DEM restored using 30 frames.

Fig. 9.
Fig. 9.

Magnified upper left region of the flat model and restored DEM: (a) true DEM; (b) DEM restored using one frame; and (c) DEM restored using 30 frames.

Fig. 10.
Fig. 10.

DEM restoration for case of 45° look-angle trajectory: (a) restored DEM using only one frame and (b) restored image using 30 frames.

Fig. 11.
Fig. 11.

Accuracy of relative position data from the “video navigation” algorithm: (a) difference between true and restored Z coordinate and (b) difference between true and restored Y coordinate.

Fig. 12.
Fig. 12.

SR restoration of a realistic lunar surface model: (a) true DEM, (b) DEM restored using one frame, and (c) DEM restored using 20 frames.

Fig. 13.
Fig. 13.

Zoomed-in area [see box in Fig. 12(a)]: (a) true DEM, (b) DEM restored using one frame, and (c) DEM restored using 20 frames.

Fig. 14.
Fig. 14.

(a) General view of the experimental setup. (b) View of the target board from a close range.

Fig. 15.
Fig. 15.

(a) Range image, (b) DEM obtained using one frame, and (c) DEM obtained using 20 frames.

Fig. 16.
Fig. 16.

ALHAT hazard field at NASA KSC.

Fig. 17.
Fig. 17.

Results of DEM restoration: (a) DEM obtained using one frame and (b) SR DEM obtained from 20 frames.

Fig. 18.
Fig. 18.

Zoomed area 1 (from Fig. 17): (a) DEM obtained from one frame and (b) SR DEM obtained from 20 frames.

Fig. 19.
Fig. 19.

Zoomed area 2 (from Fig. 17): (a) DEM obtained from one frame and (b) SR DEM obtained from 20 frames.

Fig. 20.
Fig. 20.

Comparison of the truth DEM and SR restored DEM.

Tables (1)

Tables Icon

Table 1. Results of Helicopter Flight Test

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ζ(x,y,t)=ρ(x,y,t)ϑ(x,y,t)+η(t),
Ri=1/Si×ΩiR(x,y)ds,
Ri1Kik=1k=KiRk,
hk1=(Rk1Ri)×sinθi.
S(k1)S(k1)+hk1,M(k1)M(k1)+1.
D(k)=S(k)/M(k),
R(V,h)=T,
B=R(V,h)V.
Ti+1Ti=R(Vi+1,h)R(Vi,h)B×(Vi+1Vi),i=1,,MVi+1=Vi+(B+B)1×(Ti+1Ti)
Vi+1k=Vi+(B+B)1×(Ti+1R(Vik1,h)),k=1,,LVi+10=Vi
hbp=Πht=Π(xx,yy)ht(x,y)dxdy,
ht=Π1hbp.

Metrics