Abstract

Multilevel anisotropic diffractive optical elements (DOEs), in which digitized spatial patterns of optical birefringence are fabricated by means of stepping photoalignment technique, has been demonstrated using photo-cross-linkable polymer liquid crystals (PCLCs). The polarization state of incident light is converted into a different polarization state by diffracting light in the practical, i.e., transparent in visible region and thermally stable, multilevel anisotropic DOEs, and both polarization azimuth and ellipticity can be widely controlled by their birefringence patterns. Theoretical considerations for such polarization conversion were also performed using the Jones calculus and diffraction theory and well-explained experimental observations.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  2. S. Beretta and M. Cairoli, “Design of multilevel thin-film phase gratings with optimized diffraction efficiency,” Opt. Lett. 16, 684–686 (1991).
    [CrossRef]
  3. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
    [CrossRef]
  4. P. Szwaykowski and V. Arrizon, “Talbot array illuminator with multilevel phase gratings,” Appl. Opt. 32, 1109–1114 (1993).
    [CrossRef]
  5. S. Liu and Y. Chen, “Multilevel binary phase grating polarization device with a birefringent substrate,” Opt. Lett. 20, 1832–1834 (1995).
    [CrossRef]
  6. F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
    [CrossRef]
  7. M. Oliva, D. Michaelis, T. Benkenstein, J. Dunkel, T. Harzendorf, A. Matthes, and U. D. Zeitner, “Highly efficient three-level blazed grating in the resonance domain,” Opt. Lett. 35, 2774–2776 (2010).
    [CrossRef]
  8. M. Oliva, T. Harzendorf, D. Michaelis, U. D. Zeitner, and A. Tünnermann, “Multilevel blazed gratings in resonance domain: an alternative to the classical fabrication approach,” Opt. Express 19, 14735–14745 (2011).
    [CrossRef]
  9. M. Fratz, D. M. Giel, and P. Fischer, “Digital polarization holograms with defined magnitude and orientation of each pixel’s birefringence,” Opt. Lett. 34, 1270–1272 (2009).
    [CrossRef]
  10. M. Fratz, S. Sinzinger, and D. Giel, “Design and fabrication of polarization-holographic elements for laser beam shaping,” Appl. Opt. 48, 2669–2677 (2009).
    [CrossRef]
  11. V. P. Shibaev and S. G. Kostromin, Polymers as Electroactive and Photooptical Media (Springer, 1996).
  12. K. Ichimura, “Photoalignment liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
    [CrossRef]
  13. A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4176 (2002).
    [CrossRef]
  14. N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
    [CrossRef]
  15. N. Kawatsuki and H. Ono, “Photoinduced reorientation of photo-cross-linkable polymer liquid crystals and applications to highly functionalized optical devices,” in Hand book of Organic Electronics and Photonics, M. S. A. Adbel Mottaleb and H. S. Nalwa, eds. (American Scientific Publishers, 2008), Chap. 20.

2011 (1)

2010 (1)

2009 (2)

2002 (2)

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4176 (2002).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

2000 (1)

K. Ichimura, “Photoalignment liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

1999 (1)

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

1995 (1)

1993 (1)

1992 (1)

1991 (1)

Arrizon, V.

Benkenstein, T.

Beretta, S.

Cairoli, M.

Chen, Y.

Dunkel, J.

Fischer, P.

Fratz, M.

Gaylord, T. K.

Giel, D.

Giel, D. M.

Glytsis, E. N.

Goto, K.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

Harzendorf, T.

Ichimura, K.

K. Ichimura, “Photoalignment liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

Kawakami, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

N. Kawatsuki and H. Ono, “Photoinduced reorientation of photo-cross-linkable polymer liquid crystals and applications to highly functionalized optical devices,” in Hand book of Organic Electronics and Photonics, M. S. A. Adbel Mottaleb and H. S. Nalwa, eds. (American Scientific Publishers, 2008), Chap. 20.

King, H.-J.

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Ko, F.-J.

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Kostromin, S. G.

V. P. Shibaev and S. G. Kostromin, Polymers as Electroactive and Photooptical Media (Springer, 1996).

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Liu, S.

Matthes, A.

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Michaelis, D.

Natansohn, A.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4176 (2002).
[CrossRef]

Oliva, M.

Ono, H.

N. Kawatsuki and H. Ono, “Photoinduced reorientation of photo-cross-linkable polymer liquid crystals and applications to highly functionalized optical devices,” in Hand book of Organic Electronics and Photonics, M. S. A. Adbel Mottaleb and H. S. Nalwa, eds. (American Scientific Publishers, 2008), Chap. 20.

Rochon, P.

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4176 (2002).
[CrossRef]

Shibaev, V. P.

V. P. Shibaev and S. G. Kostromin, Polymers as Electroactive and Photooptical Media (Springer, 1996).

Shieh, H.-P. D.

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Sinzinger, S.

Szwaykowski, P.

Tünnermann, A.

Wu, C.-K.

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Wu, S.-Y.

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

Zeitner, U. D.

Appl. Opt. (3)

Chem. Rev. (2)

K. Ichimura, “Photoalignment liquid-crystal systems,” Chem. Rev. 100, 1847–1874 (2000).
[CrossRef]

A. Natansohn and P. Rochon, “Photoinduced motions in azo-containing polymers,” Chem. Rev. 102, 4139–4176 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F.-J. Ko, C.-K. Wu, H.-J. King, S.-Y. Wu, and H.-P. D. Shieh, “Improving the quality of liquid-crystal projection image by multilevel diffractive grating technique,” Jpn. J. Appl. Phys. 38, 4117–4121 (1999).
[CrossRef]

Macromolecules (1)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (3)

V. P. Shibaev and S. G. Kostromin, Polymers as Electroactive and Photooptical Media (Springer, 1996).

N. Kawatsuki and H. Ono, “Photoinduced reorientation of photo-cross-linkable polymer liquid crystals and applications to highly functionalized optical devices,” in Hand book of Organic Electronics and Photonics, M. S. A. Adbel Mottaleb and H. S. Nalwa, eds. (American Scientific Publishers, 2008), Chap. 20.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Chemical structure of a photo-cross-linkable poly(methylmethacrylate) liquid crystal with 4-(4-methoxycinnamoyloxy)biphenyl side groups (PCLC).

Fig. 2.
Fig. 2.

Experimental setup for stepping exposure of LPUV light.

Fig. 3.
Fig. 3.

Pictures obtained from POM observations of multilevel anisotropic digital optical elements (DOEs) with symmetric structures. The spatial distribution of optic axis in the DOE is schematically described at the upper of each POM picture. The black allowed in the upper pictures schematically show the optic axis at each point linking with each POM picture; the numbers represent the angle of the optic axis at each point.

Fig. 4.
Fig. 4.

Pictures obtained from POM observations of multilevel anisotropic digital optical elements (DOEs) with antisymmetric structures. The spatial distribution of optic axis in the DOE is schematically described at the upper of each POM picture. The black allowed in the upper pictures schematically show the optic axis at each point linking with each POM picture; the numbers represent the angle of the optic axis at each point.

Fig. 5.
Fig. 5.

Calculation model of multilevel anisotropic DOEs. The Jones matrix of the Nth division is shown as JN. JN with odd number of N represent the Jones matrix in the area between two irradiated regions, while JN with even number of N represent the Jones matrix in the photo-alignment region.

Fig. 6.
Fig. 6.

Polar plots of multilevel anisotropic DOEs with birefringence patterns described in Figs. 3 and 4. Symbols represent the experimental observations and solid curves theoretical calculations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Ec=[1000]·R(ϕ)·[exp(iΓ/2)00exp(iΓ/2)]·R(ϕ)·[01]=i[sin2ϕsinΓ20],
I=sin22ϕsin2Γ2.
JN=R(ϕN)·T·R(ϕN),
T=[exp(iΓ2)00exp(iΓ2)],
R(ϕN)=[cosϕNsinϕNsinϕNcosϕN].
Tm=1pp/2p/2J(x)ei2πpmxdx,
Tm=1pN=1kp/2+p(N1)/kp/2+pN/kJNei2πpmxdx.
Tm=1pN=1kJNp/2+p(N1)/kp/2+pN/kei2πpmxdx=1pN=1kJN|ip2πmei2πpmx|p/2+p(N1)/kp/2+pN/k,
Tm=i2πmeiπm(eiπkmeiπkm)(N=1kJN·ei2N1kπm).
Tm=(1)mπmsin(mkπ)(N=1kJNei2N1kπm).
Em=Tm·(cosϑsinϑ).
Eoutm=R(θ)·[1000]·R(θ)·Em=[cos2θcosθsinθcosθsinθsin2θ]·Em.
I(θ)=|Eoutm|2.

Metrics