Abstract

In this paper, we present a method for the mathematically formulated phase engineering of interfering laser beams through a spatial light modulator for a holographic fabrication of graded photonic lattices. The desired phases can be programmed at specific locations by assigning gray levels in cellular structures. The method is demonstrated by embedding single-lattice structures or missing lattices in dual-lattice periodic photonic structures. The demonstrated method can be potentially combined with the coordinate transformation technique in transformation optics for the fabrication of graded photonic devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  4. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
    [CrossRef]
  5. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
    [CrossRef]
  6. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef]
  7. J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).
  8. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
    [CrossRef]
  9. L. Pang, W. Nakagawa, and Y. Fainman, “Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write,” Appl. Opt. 42, 5450–5456 (2003).
    [CrossRef]
  10. K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1, 1034–1039 (2011).
    [CrossRef]
  11. J. Lutkenhaus, F. A. Farro, D. George, K. Ohlinger, H. Zhang, Z. Poole, K. P. Chen, and Y. Lin, “Holographic fabrication of 3D photonic crystals using silicon based reflective optics element,” Opt. Mater. Express 2, 1236–1241 (2012).
    [CrossRef]
  12. J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
    [CrossRef]
  13. X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012).
    [CrossRef]
  14. P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
    [CrossRef]
  15. A. Kelberer, M. Boguslawski, P. Rose, and C. Denz, “Embedding defect sites into hexagonal nondiffracting wave fields,” Opt. Lett. 37, 5009–5011 (2012).
    [CrossRef]
  16. M. Kumar and J. Joseph, “Embedding a nondiffracting defect site in helical lattice wave-field by optical phase engineering,” Appl. Opt. 52, 5653–5658 (2013).
    [CrossRef]
  17. V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
    [CrossRef]
  18. K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
    [CrossRef]
  19. R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
    [CrossRef]
  20. V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
    [CrossRef]
  21. N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005).
    [CrossRef]
  22. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
    [CrossRef]
  23. Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
    [CrossRef]
  24. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
    [CrossRef]
  25. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
    [CrossRef]
  26. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
    [CrossRef]
  27. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [invited],” Appl. Opt. 52, 61–72 (2013).
    [CrossRef]
  28. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
    [CrossRef]
  29. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
    [CrossRef]
  30. B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012).
    [CrossRef]
  31. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
    [CrossRef]
  32. R. C. Rumpf and J. Pazos, “Synthesis of spatially variant lattices,” Opt. Express 20, 15263–15274 (2012).
    [CrossRef]
  33. J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, “Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask,” Opt. Express 21, 26227–26235 (2013).
    [CrossRef]
  34. K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013).
    [CrossRef]
  35. U. Levy, H. Kim, C. Tsai, and Y. Fainman, “Near-infrared demonstration of computer generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett. 30, 2089–2091 (2005).
    [CrossRef]
  36. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

2013

2012

B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

R. C. Rumpf and J. Pazos, “Synthesis of spatially variant lattices,” Opt. Express 20, 15263–15274 (2012).
[CrossRef]

J. Lutkenhaus, F. A. Farro, D. George, K. Ohlinger, H. Zhang, Z. Poole, K. P. Chen, and Y. Lin, “Holographic fabrication of 3D photonic crystals using silicon based reflective optics element,” Opt. Mater. Express 2, 1236–1241 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

A. Kelberer, M. Boguslawski, P. Rose, and C. Denz, “Embedding defect sites into hexagonal nondiffracting wave fields,” Opt. Lett. 37, 5009–5011 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012).
[CrossRef]

2011

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1, 1034–1039 (2011).
[CrossRef]

2010

B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
[CrossRef]

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

2009

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
[CrossRef]

2008

J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
[CrossRef]

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
[CrossRef]

2005

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).

U. Levy, H. Kim, C. Tsai, and Y. Fainman, “Near-infrared demonstration of computer generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett. 30, 2089–2091 (2005).
[CrossRef]

N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005).
[CrossRef]

2004

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

2003

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Arakawa, Y.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Arigong, B.

K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013).
[CrossRef]

B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012).
[CrossRef]

Boers, J.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Boguslawski, M.

Braun, P. V.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Brzezinski, A.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Burrow, G. M.

Chao, D.

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

Chen, K. P.

Chow, E.

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

de Boer, G.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Denz, C.

Fainman, Y.

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Farro, F. A.

Gajic, R.

Gaylord, T. K.

George, D.

Girolami, G.

Grot, A.

Guan, Y. F.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

Guimard, D.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Harb, A.

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Hingerl, K.

Hsu, C.

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Ishida, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Isic, G.

Iwamoto, S.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Jacobs, D.

Jager, R.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Jeon, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Joseph, J.

Kampherbeek, B. J.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Kelberer, A.

Kenis, P. J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Kim, H.

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Kuiper, V.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Kumar, M.

Kummer, J. W.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Kurizki, G.

Lai, N. D.

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Leibovici, M. C. R.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
[CrossRef]

Levy, U.

Li, J.

Liang, B.

Liang, W.

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Lin, J.

Lin, Y.

K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013).
[CrossRef]

J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, “Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask,” Opt. Express 21, 26227–26235 (2013).
[CrossRef]

J. Lutkenhaus, F. A. Farro, D. George, K. Ohlinger, H. Zhang, Z. Poole, K. P. Chen, and Y. Lin, “Holographic fabrication of 3D photonic crystals using silicon based reflective optics element,” Opt. Mater. Express 2, 1236–1241 (2012).
[CrossRef]

B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012).
[CrossRef]

K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1, 1034–1039 (2011).
[CrossRef]

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
[CrossRef]

Liu, Y.

Lozano, K.

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
[CrossRef]

Lutkenhaus, J.

Menon, R.

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

Mirkarimi, L. W.

Moazzezi, M.

Moon, J. H.

J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).

Nakagawa, W.

Nelson, E.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Nomura, M.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Ohlinger, K.

K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013).
[CrossRef]

J. Lutkenhaus, F. A. Farro, D. George, K. Ohlinger, H. Zhang, Z. Poole, K. P. Chen, and Y. Lin, “Holographic fabrication of 3D photonic crystals using silicon based reflective optics element,” Opt. Mater. Express 2, 1236–1241 (2012).
[CrossRef]

K. Ohlinger, H. Zhang, Y. Lin, D. Xu, and K. P. Chen, “A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication,” Opt. Mater. Express 1, 1034–1039 (2011).
[CrossRef]

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

Pang, L.

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Patel, A.

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

Pazos, J.

Peijster, J. J. M.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

Philipose, U.

Poole, Z.

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Ramanan, V.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Ren, H.

Rogers, J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Rose, P.

Rumpf, R. C.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

Shao, J.

Sheats, J. R.

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Sigalas, M.

Slot, E.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Smith, B. W.

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

Smith, H. I.

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

Steenbrink, S. W. H. K.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Tandaechanurat, A.

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Teepen, T. F.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

ten Berge, G. F.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Torres, F.

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

Tsai, C.

van de Peut, T.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

van Veen, A. H. V.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Vasic, B.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Walsh, M.

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

Wieland, M. J.

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Wiltzius, P.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

Wong, K. S.

X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012).
[CrossRef]

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
[CrossRef]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Xie, X.

Xie, X. S.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

Xu, D.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yan, L.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
[CrossRef]

Yang, S.

J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Zhang, H.

Zhang, M.

X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012).
[CrossRef]

Zhang, P.

Zhang, P. Q.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

Zheng, G.

Zhong, Y.

Zhou, J.

Zhou, J. Y.

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

Adv. Mater.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Q. Zhang, X. S. Xie, Y. F. Guan, J. Y. Zhou, K. S. Wong, and L. Yan, “Adaptive synthesis of optical pattern for photonic crystal lithography,” Appl. Phys. B 104, 113 (2011).
[CrossRef]

Appl. Phys. Lett.

V. Ramanan, E. Nelson, A. Brzezinski, P. V. Braun, and P. Wiltzius, “Three dimensional silicon-air photonic crystals with controlled defects using interference lithography,” Appl. Phys. Lett. 92, 173304 (2008).
[CrossRef]

J. Appl. Phys.

K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K. P. Chen, “Photonic crystals with defect structures fabricated through a combination of holographic lithography and two-photon lithography,” J. Appl. Phys. 108, 073113 (2010).
[CrossRef]

K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, and Y. Lin, “Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography,” J. Appl. Phys. 114, 213102 (2013).
[CrossRef]

J. Macromol. Sci. Polym. Rev. C

J. H. Moon and S. Yang, “Creating three-dimensional polymeric microstructures by multi-beam interference lithography,” J. Macromol. Sci. Polym. Rev. C 45, 351–373 (2005).

Nat. Photonics

A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2011).
[CrossRef]

Nature

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonics crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Opt. Express

N. D. Lai, W. Liang, J. Lin, and C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005).
[CrossRef]

J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G. Kurizki, D. Jacobs, K. S. Wong, and Y. Zhong, “Fabrication of photonic crystals with functional defects by one-step holographic lithography,” Opt. Express 16, 12899–12904 (2008).
[CrossRef]

Y. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
[CrossRef]

B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010).
[CrossRef]

J. Lutkenhaus, D. George, M. Moazzezi, U. Philipose, and Y. Lin, “Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask,” Opt. Express 21, 26227–26235 (2013).
[CrossRef]

B. Arigong, J. Shao, H. Ren, G. Zheng, J. Lutkenhaus, H. Kim, Y. Lin, and H. Zhang, “Reconfigurable surface plasmon polariton wave adapter designed by transformation optics,” Opt. Express 20, 13789–13797 (2012).
[CrossRef]

R. C. Rumpf and J. Pazos, “Synthesis of spatially variant lattices,” Opt. Express 20, 15263–15274 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

Opt. Lett.

Opt. Mater. Express

Phys. Rev. Lett.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Physica E

X. Xie, Y. Liu, M. Zhang, J. Zhou, and K. S. Wong, “Manipulating spatial light fields for micro- and nano-photonics,” Physica E 44, 1109 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. USA

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. USA 101, 12428–12433 (2004).
[CrossRef]

Proc. SPIE

R. Menon, A. Patel, D. Chao, M. Walsh, and H. I. Smith, “Zone-plate-array lithography (ZPAL): optical maskless lithography for cost-effective patterning,” Proc. SPIE 5751, 330–339 (2005).
[CrossRef]

V. Kuiper, B. J. Kampherbeek, M. J. Wieland, G. de Boer, G. F. ten Berge, J. Boers, R. Jager, T. van de Peut, J. J. M. Peijster, E. Slot, S. W. H. K. Steenbrink, T. F. Teepen, and A. H. V. van Veen, “MAPPER: high throughput maskless lithography,” Proc. SPIE 7470, 74700Q (2009).
[CrossRef]

Rev. Sci. Instrum.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777 (2006).
[CrossRef]

Other

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of experimental optics setup using the SLM for spatially specified phase engineering for interfering beams. The laser beam is diffracted by the phase pattern. Only four out of six first-order diffracted beams are selected for the interference. Other-order diffracted beams are not shown. (b) A designed phase pattern where the line area is replaced by a constant phase. Insert is an enlarged view of phase pattern in hexagonal symmetry. (c) A spatially specified phase pattern embedded inside for graded structures.

Fig. 2.
Fig. 2.

(a) Assignment of gray levels in phase pattern and pattern design parameters. The red hexagon indicates the diffraction orientation and also a unit cell for the phase determination of first-order diffractions. The phases of the diffracted beams (1–6) are determined by the averaged gray levels of kite-type four-side polygons inside the red hexagon. (b) CCD recorded diffraction pattern where six first-order diffractions are labeled 1–6. (c) Simulated interference patterns. (d) A drawing showing diffraction and interference angles.

Fig. 3.
Fig. 3.

(a) SEM image of fabricated photonic structures with integrated dark line (missing lattice). (b) AFM image of the fabricated dark line in photonic lattices. (c)–(d) AFM profile measured along the purple and orange lines in (b), respectively.

Fig. 4.
Fig. 4.

(a) Enlarged view of embedded phase pattern inside the majority phase pattern for the generation of graded structures of single lattice in dual-lattice structures. The red, green, blue, and yellow hexagons form the boundary of embedded and majority patterns. (b) Basic unit of hexagon with different gray levels in six equilateral triangle (b1); the orange (b2) and purple (b3) hexagon unit cells indicate diffraction orientation and phase determination by the gray levels in six triangles. (c) Different gray levels in six triangles linked by green (c1), yellow (c2), blue (c3), and red (c4) hexagons corresponding to the hexagons with same color in (a).

Fig. 5.
Fig. 5.

(a) Diffraction pattern from the spatially variant phase pattern by 532 nm laser. (b) Interference patterns recorded by the CCD camera. (c) Simulated interference pattern for single lattice regions (c2) and dual-lattice regions (c2). (d) SEM image of fabricated photonic structures with single lattices embedded in dual lattices.

Fig. 6.
Fig. 6.

(a) SEM image of fabricated photonic structures where the boundary is red, green, blue, and yellow hexagons. (b) Simulated interference patterns for the boundary regions indicated by red (b1), green (b2), blue (b3), and yellow (b4) hexagons.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

18×102+818×255+118×51+16×0,
13×204+818×255+118×153+16×0.
I(r)=i=14Ei2(r,t)+i<j4EiEjei·ejcos[(kjki)·r+(δjδi)],
(2L)32sinθ1=λ,
sinθ2=fsinθ1/(32)/f.
Λ=λ/(sinθ2sin60)=λ/(sinθ2(32))=L3.
Λ=L3/(demagnification of 4f lenses andobjective lens).
(13×51+818×5+118×5+16×5)×2π255,
(13×151+818×5+118×5+16×5)×2π255.

Metrics