Abstract

In this paper, we have proposed a magneto-optic (MO) surface plasmon polariton (SPP) modulator based on variations of refractive index. For description of modulator operation, we have analyzed the MO effects in the insulator–metal–insulator (IMI) SPP slab waveguides in a transversal configuration in which the applied magnetic field is parallel to the interfaces and normal to the wave propagation direction. We have derived an exact dispersion relation by considering MO effects for one of the side layers by the separation of variables method. The cut-off conditions have been studied for the SPP modes guided by IMI structures as a function of the variations of the dielectric constants of the side layers. We have shown that the SPP modes always propagate in a symmetric structure and the SPP odd modes do not have a cut-off dielectric constant in an asymmetric structure. Also, we have shown that in an asymmetric IMI configuration, the SPP even mode has a cut-off effective dielectric constant for all metal layer thicknesses. These configurations can be used to design active devices, such as switches and modulators to be used in photonic integrated circuits.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
    [CrossRef]
  3. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
    [CrossRef]
  4. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schroteler, M. Wallenhorst, and H. Dötsch, “Improved design of magneto-optic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998).
    [CrossRef]
  5. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38, 6550–6555 (1999).
    [CrossRef]
  6. Y. Shoji, I. W. Hsieh, R. M. Osgood, and T. Mizumoto, “Polarization-independent magneto-optical waveguide isolator using TM-mode nonreciprocal phase shift,” J. Lightwave Technol. 25, 3108–3113 (2007).
    [CrossRef]
  7. M. Vanwolleghem, P. Gogol, P. Beauvillain, W. Van Parys, and R. L. Baets, “Design and optimization of a monolithically integratable InP-based optical waveguide isolator,” J. Opt. Soc. Am. B 24, 94–105 (2007).
    [CrossRef]
  8. Z. Haifeng, J. Xiaoqing, Y. Jianyi, Z. Qiang, Y. Tianbao, W. Minghua, and T. Yu, “Wavelength-selective optical waveguide isolator based on nonreciprocal ring-coupled Mach–Zehnder interferometer,” J. Lightwave Technol. 26, 3166–3172 (2008).
    [CrossRef]
  9. J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
    [CrossRef]
  10. M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011).
    [CrossRef]
  11. M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013).
    [CrossRef]
  12. M. Khatir and N. Granpayeh, “An ultra-compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
    [CrossRef]
  13. R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
    [CrossRef]
  14. R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007).
    [CrossRef]
  15. S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
    [CrossRef]
  16. T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
    [CrossRef]
  17. B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
    [CrossRef]
  18. Z. Sun, Y. He, and J. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45, 3071–3076 (2006).
    [CrossRef]
  19. G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
    [CrossRef]
  20. S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003).
    [CrossRef]
  21. S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003).
    [CrossRef]
  22. V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  24. B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
    [CrossRef]
  25. Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
    [CrossRef]
  26. A. Erdmann and P. Hertel, “Beam-propagation in magnetooptic waveguides,” IEEE J. Quantum Electron. 31, 1510–1516 (1995).
    [CrossRef]
  27. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett. 30, 1473–1475 (2005).
    [CrossRef]
  28. M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013).
    [CrossRef]
  29. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef]
  30. A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  31. J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
    [CrossRef]
  32. H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
    [CrossRef]
  33. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  34. J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
    [CrossRef]

2013 (3)

M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An ultra-compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013).
[CrossRef]

2012 (1)

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

2011 (1)

M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011).
[CrossRef]

2010 (4)

S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
[CrossRef]

T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
[CrossRef]

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

J. Park, K. Y. Kim, I. M. Lee, H. Na, S. Y. Lee, and B. Lee, “Trapping light in plasmonic waveguides,” Opt. Express 18, 598–623 (2010).
[CrossRef]

2009 (2)

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (4)

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Z. Sun, Y. He, and J. Guo, “Surface plasmon resonance sensor based on polarization interferometry and angle modulation,” Appl. Opt. 45, 3071–3076 (2006).
[CrossRef]

B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
[CrossRef]

2005 (1)

2004 (2)

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
[CrossRef]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003).
[CrossRef]

2000 (2)

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1999 (1)

1998 (2)

1995 (1)

A. Erdmann and P. Hertel, “Beam-propagation in magnetooptic waveguides,” IEEE J. Quantum Electron. 31, 1510–1516 (1995).
[CrossRef]

1992 (1)

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

1985 (1)

Alexander, R. W.

Allen, M.

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

Ando, K.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

Ando, R.

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
[CrossRef]

Bader, S. D.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Baets, R. L.

Bahlmann, N.

Bahuguna, R.

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007).
[CrossRef]

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Beauvillain, P.

Bell, R. J.

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Blanco, F. J.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Brongersma, M. L.

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

Chandran, A.

Chandrasekhara, V.

Chau, K. J.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
[CrossRef]

Cho, J. K.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Deng, W.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Djurišic, A. B.

Domínguez, C.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Dötsch, H.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Elazar, J. M.

Elezzabi, A. Y.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003).
[CrossRef]

Erdmann, A.

Ferreiro-Vila, E.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

García-Martín, J. M.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

Gerhardt, R.

Gogol, P.

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

González-Díaz, J. B.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

Granpayeh, N.

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An ultra-compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011).
[CrossRef]

Guo, J.

Haifeng, Z.

He, Y.

Hensley, J.

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

Hertel, P.

N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schroteler, M. Wallenhorst, and H. Dötsch, “Improved design of magneto-optic rib waveguides for optical isolators,” J. Lightwave Technol. 16, 818–823 (1998).
[CrossRef]

A. Erdmann and P. Hertel, “Beam-propagation in magnetooptic waveguides,” IEEE J. Quantum Electron. 31, 1510–1516 (1995).
[CrossRef]

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

Hsieh, I. W.

Inoue, M.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Irvine, S. E.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003).
[CrossRef]

S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003).
[CrossRef]

Jianyi, Y.

Jin-Wei, T.

T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
[CrossRef]

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

Kemmet, S.

S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
[CrossRef]

Khatir, M.

M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An ultra-compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011).
[CrossRef]

Kim, K. Y.

Lechuga, L. M.

B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
[CrossRef]

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Lee, B.

Lee, I. M.

Lee, S. Y.

Lehmann, R.

Long, L. L.

Lührmann, B.

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Mayora, K.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Mina, M.

S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
[CrossRef]

T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
[CrossRef]

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007).
[CrossRef]

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

Minghua, W.

Mizumoto, T.

Montoya, J.

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

Moreno, M.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Na, H.

Nakano, H.

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

Nishimura, K.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Nomura, A.

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

Ordal, M. A.

Osgood, R. M.

Parameswaran, K.

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

Park, J.

Park, J. H.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Qiang, Z.

Qiu, Z. Q.

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Querry, M. R.

Rakic, A. D.

Ram, R.

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

Saito, H.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

Salz, D.

Sánchez del Río, J.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

Schroteler, F. J.

Sepúlveda, B.

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

B. Sepúlveda, L. M. Lechuga, and G. Armelles, “Magneto-optic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945–955 (2006).
[CrossRef]

Shibayama, J.

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

Shoji, Y.

Sun, Z.

Sure, S.

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

Takagi, H.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Tianbao, Y.

Torrado, J. F.

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

Uchida, H.

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

Van Parys, W.

Vanwolleghem, M.

Wallenhorst, M.

Weber, R. J.

T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
[CrossRef]

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007).
[CrossRef]

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

Winkler, H. P.

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

Xiaoqing, J.

Yamauchi, J.

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

Ye, M.

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

Yu, T.

Yuasa, S.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

Zayets, V.

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

Zhu, Z.

Zia, R.

Appl. Opt. (4)

IEEE J. Quantum Electron. (3)

J. Shibayama, A. Nomura, R. Ando, J. Yamauchi, and H. Nakano, “A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices,” IEEE J. Quantum Electron. 46, 40–49 (2010).
[CrossRef]

A. Erdmann and P. Hertel, “Beam-propagation in magnetooptic waveguides,” IEEE J. Quantum Electron. 31, 1510–1516 (1995).
[CrossRef]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron. 40, 571–579 (2004).
[CrossRef]

IEEE Trans. Magn. (7)

J. H. Park, H. Takagi, J. K. Cho, K. Nishimura, H. Uchida, and M. Inoue, “Magnetooptic spatial light modulator with one-step pattern growth on ion-milled substrates by liquid-phase epitaxy,” IEEE Trans. Magn. 40, 3045–3047 (2004).
[CrossRef]

R. Bahuguna, M. Mina, T. Jin-Wei, and R. J. Weber, “Magneto-optic-based fiber switch for optical communications,” IEEE Trans. Magn. 42, 3099–3101 (2006).
[CrossRef]

R. Bahuguna, M. Mina, and R. J. Weber, “Mach-Zehnder interferometric switch utilizing Faraday rotation,” IEEE Trans. Magn. 43, 2680–2682 (2007).
[CrossRef]

S. Kemmet, M. Mina, and R. J. Weber, “Current-controlled, high-speed magneto-optic switching,” IEEE Trans. Magn. 46, 1829–1831 (2010).
[CrossRef]

T. Jin-Wei, M. Mina, and R. J. Weber, “All-optical integrated switch utilizing Faraday rotation,” IEEE Trans. Magn. 46, 2474–2477 (2010).
[CrossRef]

M. Khatir and N. Granpayeh, “A wide band and high confinement surface plasmon polariton mode converter based on magneto-optic effects,” IEEE Trans. Magn. 49, 1343–1352 (2013).
[CrossRef]

H. Dötsch, P. Hertel, B. Lührmann, S. Sure, H. P. Winkler, and M. Ye, “Applications of magnetic garnet films in integrated optics,” IEEE Trans. Magn. 28, 2979–2984 (1992).
[CrossRef]

J. Appl. Phys. (1)

J. Montoya, J. Hensley, K. Parameswaran, M. Allen, and R. Ram, “Surface plasmon isolator based on nonreciprocal coupling,” J. Appl. Phys. 106, 023108 (2009).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. A (2)

B. Sepúlveda, J. Sánchez del Río, M. Moreno, F. J. Blanco, K. Mayora, C. Domínguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices,” J. Opt. A 8, S561–S566 (2006).
[CrossRef]

G. Armelles, A. Cebollada, A. García-Martín, J. M. García-Martín, M. U. González, J. B. González-Díaz, E. Ferreiro-Vila, and J. F. Torrado, “Magneto-plasmonic nanostructures: systems supporting both plasmonic and magnetic properties,” J. Opt. A 11, 114023 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. E. Irvine and A. Y. Elezzabi, “A miniature broadband bismuth-substituted yttrium iron garnet magneto-optic modulator,” J. Phys. D 36, 2218–2221 (2003).
[CrossRef]

Material (1)

V. Zayets, H. Saito, K. Ando, and S. Yuasa, “Optical isolator utilizing surface plasmons,” Material 5, 857–871 (2012).

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Commun. (1)

S. E. Irvine and A. Y. Elezzabi, “Wideband magneto-optic modulation in a bismuth-substituted yttrium iron garnet waveguide,” Opt. Commun. 220, 325–329 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (2)

M. Khatir and N. Granpayeh, “An exact analysis method of SPP propagation in the anisotropic magneto-optic slab waveguides, I. Transversal configuration,” Optik 124, 276–281 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “Design and simulation of magneto-optic Mach-Zehnder isolator,” Optik 122, 2199–2202 (2011).
[CrossRef]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Rev. Sci. Instrum. (1)

Z. Q. Qiu and S. D. Bader, “Surface magneto-optic Kerr effect,” Rev. Sci. Instrum. 71, 1243–1255 (2000).
[CrossRef]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Basic schematic view of the MO-SPP modulator based on the variations of the dielectric constant in IMI configuration.

Fig. 2.
Fig. 2.

Geometry of the SP MO IMI structure (a) without and (b) with magnetization using our new proposed modulator.

Fig. 3.
Fig. 3.

Absolute value of Eq. (7) versus the real part of the normalized propagation constant for different values of the imaginary part of the propagation constant of the IMI structure of Fig. 2(a), consisting of the silver film with 40 nm thickness, at the wavelength of 1550 nm.

Fig. 4.
Fig. 4.

Real part of the normalized propagation constant versus mid-layer thickness for the even and odd SPP modes of the IMI structure of Fig. 2(a), at the wavelength of 1550 nm.

Fig. 5.
Fig. 5.

Hy field distributions for (a) propagating and (b) cut-off state of the even SPP mode of the IMI structure of Fig. 2(a), consisting of the silver film with 10 nm thickness, at the wavelength of 1550 nm.

Fig. 6.
Fig. 6.

(a) Real part of the normalized propagation constant and (b) SE of SPP odd mode versus Δε of the IMI structure of Fig. 2(b), for different thicknesses of the mid-layer silver, d, at the wavelength of 1550 nm.

Fig. 7.
Fig. 7.

(a) Real part of the normalized propagation constant and (b) SE of SPP even mode versus Δε of the IMI structure of Fig. 2(b), for different thicknesses of the mid-layer silver, d, at the wavelength of 1550 nm.

Fig. 8.
Fig. 8.

(a) MPA and (b) CF for SPP even mode versus Δε of the IMI configuration of Fig. 2(b), for different thicknesses of the mid-layer silver, d, at the wavelength of 1550 nm.

Fig. 9.
Fig. 9.

Real part of the z component of the normalized wave vector of (a) first and (b) third layers of the SPP even mode versus Δε of the IMI configuration of Fig. 2(b), for different thicknesses of the mid-layer silver, d, at the wavelength of 1550 nm.

Fig. 10.
Fig. 10.

Hy field amplitude of SPP even mode of the IMI configuration of Fig. 2(b), with mid-layer silver of 30 nm thickness for different values of effective dielectric constant of the MO layer, at the wavelength of 1550 nm.

Fig. 11.
Fig. 11.

Variations of (a) Δε and (b) εeff3 versus |εxz|.

Fig. 12.
Fig. 12.

Real part of the normalized propagation constant of SPP even mode versus Δε of the IMI configuration of Fig. 2(b), with mid-layer silver of 10 nm thickness for different wavelengths.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε˜r(ω)=(εxx(ω)0εxz(ω)0εyy(ω)0εxz(ω)0εzz(ω)),
ε˜r×(ε˜r1×H)+k02ε˜rH=0,
kz2=εxxεzzkx2(εxz2εzz+εxx)k02,
Hy1(x,z)=Aejkxxek1(z+d)zd,
Hy2(x,z)=ejkxx(Cek2z+Dek2z)dz0,
Hy3(x,z)=Bejkxxek3zz0.
tanh(k2d)=(εzz3ε2εeff3k1k2+εzz3ε1ε2k2k3jβεxz3ε2ε1k2)(εzz3ε22k1k3εzz3ε1εeff3k22+jβεxz3ε22k1),
εeff3=εxz32εzz3+εxx3.
ε(ω)=εωp2ω(ω+jγp),
εxz=jλ0εxxθFπ,
SE=1|Im[kzi]|,
MPA=20log(eIm[β])=8.686Im[β]dB/m,
CF=central layer|EzHy*|dz+|EzHy*|dz.
Δε=ε1εeff3,

Metrics