Abstract

Numerical mold-flow simulations and experimental measurements for injection-molded lenses have been investigated in form accuracy on a two-cavity mold with various process conditions. First, form profiles of the molded lenses have been measured together with the corresponding simulated mold-temperature distribution and displacement distribution of the lens in the z direction. A flow-through type layout of cooling channels has been devised for balance of mold-temperature distribution in mold cavities with various parametric distances for assessments in uniformity of temperature distribution. Finally, a compression-molding process is proposed for the post-process of birefringence relaxation as well as adequate form accuracy of lenses. In conclusion, optimization of process parameters to achieve good form accuracy in a multicavity mold with symmetric geometry but nonuniform cooling conditions is difficult. A good design of cooling channels plus optimized process conditions could provide uniform mold-temperature distribution so that molded lenses of good quality would be possible. Then, the profile deviation of lenses could be further compensated by profile geometry corrections. In conclusion, the post-compression-molding process could make birefringence-free plastic lenses with good form accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
    [CrossRef]
  2. H. E. Lai and P. J. Wang, “Study of process parameters on optical properties for injection molded lenses,” Appl. Opt. 47, 2017–2027 (2008).
    [CrossRef]
  3. K. M. Tsai, “Effect of injection molding process parameters on optical properties of lenses,” Appl. Opt. 49, 6149–6159 (2010).
    [CrossRef]
  4. J. W. Dally and W. F. Riley, Experimental Stress Analysis (McGraw-Hill, 1991).
  5. Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
    [CrossRef]
  6. G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).
  7. B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
    [CrossRef]
  8. M. C. Huang and C. C. Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” J. Mater. Process. Technol. 110, 1–9 (2001).
    [CrossRef]
  9. S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
    [CrossRef]
  10. S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
    [CrossRef]
  11. E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).
  12. Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).
  13. R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
    [CrossRef]
  14. A. I. Isayyev, Injection and Compression Molding Fundamentals (Dekker, 1987).
  15. G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
    [CrossRef]
  16. A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
    [CrossRef]
  17. A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006).
    [CrossRef]
  18. C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.
  19. A. F. Mills, Basic Heat and Mass Transfer (Prentice Hall, 1999).
  20. K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
    [CrossRef]
  21. J. Antony and F. J. Antony, “Teaching the Taguchi method to industrial engineers,” Work Study 50, 141–149 (2001).
  22. A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

2012

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

2010

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

K. M. Tsai, “Effect of injection molding process parameters on optical properties of lenses,” Appl. Opt. 49, 6149–6159 (2010).
[CrossRef]

2008

2007

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

2006

2005

G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
[CrossRef]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

2004

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

2003

G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).

2002

Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
[CrossRef]

2001

M. C. Huang and C. C. Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” J. Mater. Process. Technol. 110, 1–9 (2001).
[CrossRef]

J. Antony and F. J. Antony, “Teaching the Taguchi method to industrial engineers,” Work Study 50, 141–149 (2001).

2000

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

1998

K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
[CrossRef]

1991

A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

Aisa, J.

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

Ando, A.

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Antony, F. J.

J. Antony and F. J. Antony, “Teaching the Taguchi method to industrial engineers,” Work Study 50, 141–149 (2001).

Antony, J.

J. Antony and F. J. Antony, “Teaching the Taguchi method to industrial engineers,” Work Study 50, 141–149 (2001).

Azaman, M.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Bendell, A.

A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

Bergs, T.

Bociaga, E.

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Brecher, C.

Bushko, W. C.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Chang, D. Y.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Chen, H. J.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Cheng, Y. C.

C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.

Dally, J. W.

J. W. Dally and W. F. Riley, Experimental Stress Analysis (McGraw-Hill, 1991).

Demmer, A.

Disney, J.

A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

Fan, B.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Faris, N. A.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Firestone, G. C.

G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
[CrossRef]

Ghazali, M. F.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Gnatowski, A.

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Ho, J. R.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Hsieh, W. H.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Huang, C.

Huang, M. C.

M. C. Huang and C. C. Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” J. Mater. Process. Technol. 110, 1–9 (2001).
[CrossRef]

Isayyev, A. I.

G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).

A. I. Isayyev, Injection and Compression Molding Fundamentals (Dekker, 1987).

Ismail, N.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Jain, A.

G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
[CrossRef]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Jansen, K. M. B.

K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
[CrossRef]

Jaruga, T.

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Kazmer, D. O.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Klocke, F.

Kwon, T. H.

Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
[CrossRef]

Lai, F.

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Lai, H. E.

Lange, S.

Lee, H. S.

G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).

Lee, Y. B.

Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
[CrossRef]

Liao, S. J.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Lubczynska, K.

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Maekawa, Y.

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Martinez, A.

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

Matsushima, S.

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Mercado, D.

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

Merz, M.

Mills, A. F.

A. F. Mills, Basic Heat and Mass Transfer (Prentice Hall, 1999).

Nasir, S. M.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Niehaus, F.

Onishi, M.

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Pantani, R.

K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
[CrossRef]

Pongs, G.

Poslinski, A. J.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Pridmore, W. A.

A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

Riley, W. F.

J. W. Dally and W. F. Riley, Experimental Stress Analysis (McGraw-Hill, 1991).

Samin, R.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Sánchez, R.

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

Sapuan, S. M.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Shayfull, Z.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Shyu, G. D.

G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).

Su, Y. C.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Sulaiman, S.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Sun, Y. H.

C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.

Tai, C. C.

M. C. Huang and C. C. Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” J. Mater. Process. Technol. 110, 1–9 (2001).
[CrossRef]

Tan, Y. J.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Tang, S. H.

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Theriault, R. P.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Titomanlio, G.

K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
[CrossRef]

Tsai, K. M.

Tsou, L. S.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Wang, C. Y.

C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.

Wang, J. T.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Wang, P. J.

H. E. Lai and P. J. Wang, “Study of process parameters on optical properties for injection molded lenses,” Appl. Opt. 47, 2017–2027 (2008).
[CrossRef]

C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.

Winterschladen, M.

Yau, H. T.

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

Yi, A. Y.

A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511–6518 (2006).
[CrossRef]

G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
[CrossRef]

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

Yoon, K.

Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
[CrossRef]

Appl. Opt.

Arch. Mat. Sci. Eng.

E. Bociaga, T. Jaruga, K. Lubczynska, and A. Gnatowski, “Warpage of injection moulded parts as the result of mould temperature difference,” Arch. Mat. Sci. Eng. 44, 28–34 (2010).

Int. J. Eng. Technol.

Z. Shayfull, M. F. Ghazali, M. Azaman, S. M. Nasir, and N. A. Faris, “Effect of differences core and cavity temperature on injection molded part and reducing the warpage by Taguchi method,” Int. J. Eng. Technol. 10, 125–132 (2010).

Interfaces

A. Bendell, J. Disney, and W. A. Pridmore, “Taguchi methods: applications in world industry,” Interfaces 21, 99–101 (1991).

J. Am. Ceram. Soc.

A. Y. Yi and A. Jain, “Compression molding of aspherical glass lenses-A combined experimental and numerical analysis,” J. Am. Ceram. Soc. 88, 579–586 (2005).
[CrossRef]

J. Mater. Process. Technol.

M. C. Huang and C. C. Tai, “The effective factors in the warpage problem of an injection-molded part with a thin shell feature,” J. Mater. Process. Technol. 110, 1–9 (2001).
[CrossRef]

S. H. Tang, Y. J. Tan, S. M. Sapuan, S. Sulaiman, N. Ismail, and R. Samin, “The use of Taguchi method in the design of plastic injection mould for reducing warpage,” J. Mater. Process. Technol. 182, 418–426 (2007).
[CrossRef]

Japan Korea Plast Process Jt. Semin.

G. D. Shyu, A. I. Isayyev, and H. S. Lee, “Numerical simulation of flow-induced birefringence in injection molded disk,” Japan Korea Plast Process Jt. Semin. 4, 41–47 (2003).

Measurement

R. Sánchez, J. Aisa, A. Martinez, and D. Mercado, “On the relationship between cooling setup and warpage in injection molding,” Measurement 45, 1051–1056 (2012).
[CrossRef]

Polym. Eng. Sci.

B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Theriault, and A. J. Poslinski, “Birefringence prediction of optical media,” Polym. Eng. Sci. 44, 814–824 (2004).
[CrossRef]

Y. B. Lee, T. H. Kwon, and K. Yoon, “Numerical prediction of residual stresses and birefringence in injection/compression molded center-gated disk. Part I: basic modeling and results for injection molding,” Polym. Eng. Sci. 42, 2246–2272 (2002).
[CrossRef]

S. J. Liao, D. Y. Chang, H. J. Chen, L. S. Tsou, J. R. Ho, H. T. Yau, W. H. Hsieh, J. T. Wang, and Y. C. Su, “Optimal process conditions of shrinkage and warpage of thin-wall parts,” Polym. Eng. Sci. 44, 917–928 (2004).
[CrossRef]

K. M. B. Jansen, R. Pantani, and G. Titomanlio, “As-molded shrinkage measurements on polystyrene injection molded products,” Polym. Eng. Sci. 38, 254–264 (1998).
[CrossRef]

Proc. SPIE

Y. Maekawa, M. Onishi, A. Ando, S. Matsushima, and F. Lai, “Prediction of birefringence in plastics optical elements using 3D CAE for injection molding,” Proc. SPIE 3944, 935–943 (2000).
[CrossRef]

Rev. Sci. Instrum.

G. C. Firestone, A. Jain, and A. Y. Yi, “Precision laboratory apparatus for high temperature compression molding of glass lenses,” Rev. Sci. Instrum. 76, 063101 (2005).
[CrossRef]

Work Study

J. Antony and F. J. Antony, “Teaching the Taguchi method to industrial engineers,” Work Study 50, 141–149 (2001).

Other

C. Y. Wang, Y. H. Sun, Y. C. Cheng, and P. J. Wang, “A birefringence-free compression molding process for optical plastics lenses,” in 68th Conference of the Society of Plastics Engineers (2010), pp. 1372–1375.

A. F. Mills, Basic Heat and Mass Transfer (Prentice Hall, 1999).

J. W. Dally and W. F. Riley, Experimental Stress Analysis (McGraw-Hill, 1991).

A. I. Isayyev, Injection and Compression Molding Fundamentals (Dekker, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Schematic drawing of mold geometry.

Fig. 2.
Fig. 2.

Schematic structure drawing and photo picture of the in-house built compression-molding machine.

Fig. 3.
Fig. 3.

Schematic plot of die temperature history in the initial compression cycle divided into stages A, B, and C.

Fig. 4.
Fig. 4.

Plots of measured temperature, load forces, and die position from a complete experimental cycle of a test run.

Fig. 5.
Fig. 5.

Contour plots for mold surface temperature distribution at the end of the cooling stage.

Fig. 6.
Fig. 6.

Predicted displacement distribution in z direction of lenses along gate-wise direction with gate at left-hand side. Upper, Lens1; lower, Lens2.

Fig. 7.
Fig. 7.

Same as in Fig. 6 except along the transverse direction. Upper, Lens1; lower, Lens2.

Fig. 8.
Fig. 8.

Proposed layout of cooling channels in symmetry.

Fig. 9.
Fig. 9.

Temperature contour plots showing distribution of mold surface temperature in new layout of cooling channels: (a) original distance, (b) N=5, (c) N=7.5, and (d) N=10.

Fig. 10.
Fig. 10.

Predicted displacement distribution in z direction along gate-wise direction corresponding to conditions in Fig. 9: (a) original distance, (b) N=5, (c) N=7.5, and (d) N=10.

Fig. 11.
Fig. 11.

Pertinent dimensions of the injection-molded perform.

Fig. 12.
Fig. 12.

Schematic illustration of photoelasticity measurements [4].

Fig. 13.
Fig. 13.

Fringed pattern of preform with form accuracy in P-V value at 15.31 μm, and RMS value at 3.73 μm.

Fig. 14.
Fig. 14.

Results of measured residual birefringence: (a) L1, (b) L2, (c) L3, (d) L4, (e) L5, (f) L6, (g) L7, and (h) L8.

Fig. 15.
Fig. 15.

Results of SNR analysis in residual birefringence.

Fig. 16.
Fig. 16.

Results of SNR analysis in form accuracy.

Fig. 17.
Fig. 17.

Patterns of optimized results based on residual birefringence and form accuracy.

Tables (8)

Tables Icon

Table 1. Experimental Settings with Various Melt Temperatures

Tables Icon

Table 2. Experimental Settings with Various Mold Temperatures

Tables Icon

Table 3. Measured Form Accuracy with Various Melt Temperatures

Tables Icon

Table 4. Measured Form Accuracy with Various Mold Temperatures

Tables Icon

Table 5. Optimized Parameter Settings for Form Accuracy

Tables Icon

Table 6. L8 Array in Taguchi Method

Tables Icon

Table 7. Control Factors with Settings for DOE Analysis

Tables Icon

Table 8. Optimized Parameter Settings

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n2n1=c(σ1σ2),n3n2=c(σ2σ3),n1n3=c(σ3σ1),
QA=hcΔT,
L=N·D/d,N=1,2,3,,
SNRSTB=10log(1ni=1nyi2),

Metrics