Abstract

In this work, the performance of a nonconventional IR surface plasmon resonance (SPR) gas sensor structure based on the use of a metal–insulator–metal (MIM) structure is studied. This MIM-based sensor structure gives enhanced performance five times better than the conventional MI SPR optical gas sensors. The performance of the SPR gas sensors is studied under the effect of oblique incident Gaussian beams with different spot sizes, and the performance enhancement of the MIM structure is confirmed for different spot sizes. The simulation technique used to generate the results is also verified by comparing them to actual experimental results available in the literature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [CrossRef]
  2. J. Jha and A. K. Sharma, “High performance sensor based on surface plasmon resonance with chalcogenide prism and aluminium for detection in infrared,” Opt. Lett. 34, 749–751 (2009).
    [CrossRef]
  3. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
    [CrossRef]
  4. S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
    [CrossRef]
  5. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  6. J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).
  7. I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
    [CrossRef]
  8. M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.
  9. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface plasmon resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17, 293–303 (2009).
    [CrossRef]
  10. R. Kasztelanic, “Surface plasmon resonance sensors—novel architecture and improvements,” Opt. Appl. XLI, 145–155 (2011).
  11. S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
    [CrossRef]
  12. J. Guo, P. D. Keathley, and J. T. Hastings, “Dual-mode surface-plasmon-resonance sensors using angular interrogations,” Opt. Lett. 33, 512–514 (2008).
    [CrossRef]
  13. R. Gordon, “Surface plasmon nanophotonics: a tutorial,” IEEE Nanotechnol. Mag. 2(3), 12–18 (2009).
    [CrossRef]
  14. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008).
    [CrossRef]
  15. M. Scalora, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508–523 (2007).
    [CrossRef]
  16. T. Yang and K. B. Crozier, “Analysis of surface plasmon waves in metal–dielectric–metal structures and the criterion for negative refractive index,” Opt. Express 17, 1136–1143 (2009).
    [CrossRef]
  17. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19, 10029–10040 (2011).
    [CrossRef]
  18. S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
    [CrossRef]
  19. K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005).
    [CrossRef]
  20. N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.
  21. P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995).
    [CrossRef]
  22. B. K. Shukla and R. H. Patel, “Simulation of paraxial beam propagation using plane wave expansion method,” in Proceedings of Recent Advances in Microwave Theory and Applications (2008), pp. 652–656.
  23. P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
    [CrossRef]
  24. O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  26. Application Note, “Polymer identification using mid infrared spectroscopy,” Perkin-Elmer, 2011, http://www.perkinelmer.com/CMSResources/Images/44132015APP_PolymerIdentificationMidInfaredSpectroscopy.pdf .
  27. Y. K. Chang, Z.-X. Lou, K.-D. Chang, and C.-W. Chang, “Universal scaling of plasmonic refractive index sensors,” Opt. Express 21, 1804–1811 (2013).
    [CrossRef]

2013 (2)

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Y. K. Chang, Z.-X. Lou, K.-D. Chang, and C.-W. Chang, “Universal scaling of plasmonic refractive index sensors,” Opt. Express 21, 1804–1811 (2013).
[CrossRef]

2012 (1)

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[CrossRef]

2011 (3)

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
[CrossRef]

R. Kasztelanic, “Surface plasmon resonance sensors—novel architecture and improvements,” Opt. Appl. XLI, 145–155 (2011).

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19, 10029–10040 (2011).
[CrossRef]

2009 (4)

2008 (2)

2007 (2)

M. Scalora, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508–523 (2007).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

2005 (1)

K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005).
[CrossRef]

2004 (2)

O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).

S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
[CrossRef]

2003 (1)

S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
[CrossRef]

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1997 (1)

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

1995 (1)

P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995).
[CrossRef]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Anous, N.

N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.

Benech, P.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995).
[CrossRef]

Bloemer, M. J.

Brueck, S. R. J.

Chang, C.-W.

Chang, K.-D.

Chang, Y. K.

Chavez-Rivas, F.

O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).

Chen, J.

Chiu, K. P.

K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005).
[CrossRef]

Choi, I.

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[CrossRef]

Choi, Y.

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[CrossRef]

Chung, T.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Crottini, A.

Crozier, K. B.

D’Aguanno, G.

Ekgasit, S.

S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
[CrossRef]

El-Refaei, H.

M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.

Faist, J.

Fan, S.

Fischer, M.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gerard, P.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

Gordon, R.

R. Gordon, “Surface plasmon nanophotonics: a tutorial,” IEEE Nanotechnol. Mag. 2(3), 12–18 (2009).
[CrossRef]

Gresch, T.

Guo, J.

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Hastings, J. T.

Herminjard, S.

Herzig, H. P.

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Jha, J.

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Juarros, A.

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Kabashin, A. V.

S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
[CrossRef]

Kasztelanic, R.

R. Kasztelanic, “Surface plasmon resonance sensors—novel architecture and improvements,” Opt. Appl. XLI, 145–155 (2011).

Keathley, P. D.

Khalil, D.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995).
[CrossRef]

N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.

M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.

Knoll, W.

S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
[CrossRef]

Lee, B.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Lou, Z.-X.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Malloy, K. J.

Mata-Mendez, O.

O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).

Mattiucci, N.

Merino, S.

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Meunier, M.

S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
[CrossRef]

Monir, M.

M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Otaduy, D.

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Patel, R. H.

B. K. Shukla and R. H. Patel, “Simulation of paraxial beam propagation using plane wave expansion method,” in Proceedings of Recent Advances in Microwave Theory and Applications (2008), pp. 652–656.

Patskovsky, S.

S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
[CrossRef]

Pellaux, J.

Perdiguero, J. M.

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Retolaza, A.

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

Rimet, R.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

Roh, S.

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Safwat, A. M. E.

N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.

Scalora, M.

Sharma, A. K.

J. Jha and A. K. Sharma, “High performance sensor based on surface plasmon resonance with chalcogenide prism and aluminium for detection in infrared,” Opt. Lett. 34, 749–751 (2009).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

Shukla, B. K.

B. K. Shukla and R. H. Patel, “Simulation of paraxial beam propagation using plane wave expansion method,” in Proceedings of Recent Advances in Microwave Theory and Applications (2008), pp. 652–656.

Sirigu, L.

Smolyakov, G. A.

Studemann, E.

Tedjini, S.

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

Thammacharoen, C.

S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
[CrossRef]

Tsai, D. P.

K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005).
[CrossRef]

Yang, T.

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yu, Z.

Anal. Chem. (1)

S. Ekgasit, C. Thammacharoen, and W. Knoll, “Surface plasmon resonance spectroscopy based on evanescent field treatment,” Anal. Chem. 76, 561–568 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Choi and Y. Choi, “Plasmonic nanosensors: review and prospect,” IEEE J. Sel. Top. Quantum Electron. 18, 1110–1121 (2012).
[CrossRef]

IEEE Nanotechnol. Mag. (1)

R. Gordon, “Surface plasmon nanophotonics: a tutorial,” IEEE Nanotechnol. Mag. 2(3), 12–18 (2009).
[CrossRef]

IEEE Sens. J. (1)

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7, 1118–1129 (2007).
[CrossRef]

IEEE Trans. Magn. (1)

K. P. Chiu and D. P. Tsai, “Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of LHM,” IEEE Trans. Magn. 41(2), 1016–1018 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

S. Patskovsky, A. V. Kabashin, and M. Meunier, “Properties and sensing charecteristics of surface-plasmon in infrared light,” J. Opt. Soc. Am. 20, 1644–1650 (2003).
[CrossRef]

Opt. Appl. (1)

R. Kasztelanic, “Surface plasmon resonance sensors—novel architecture and improvements,” Opt. Appl. XLI, 145–155 (2011).

Opt. Commun. (2)

P. Benech and D. Khalil, “Rigorous spectral analysis of leaky structures: application to the prism coupling problem,” Opt. Commun. 118, 220–226 (1995).
[CrossRef]

P. Gerard, P. Benech, D. Khalil, R. Rimet, and S. Tedjini, “Towards a full vectorial and modal technique for the analysis of integrated optical structure: the radiation spectrum method RSM,” Opt. Commun. 140, 128–145 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Revista Mexicana De Fi’sica (1)

O. Mata-Mendez and F. Chavez-Rivas, “Theoretical and numerical study of diffraction on electromagnetic optics VI. Obliquely incident T.E.-ploarized Gaussian beams on finite grating with conducting substrate,” Revista Mexicana De Fi’sica 50, 255–264 (2004).

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Sensors (2)

J. M. Perdiguero, A. Retolaza, D. Otaduy, A. Juarros, and S. Merino, “Real-time label-free surface plasmon resonance biosensing with gold nanohole arrays fabricated by nanoimprint lithography,” Sensors 13, 1360–1368 (2013).

S. Roh, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors: review,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Other (5)

M. Monir, H. El-Refaei, and D. Khalil, “Single mode refractive index reconstruction using an NM-line technique,” in Fiber and Integrated Optics (Taylor & Francis, 2006), Vol. 25, pp. 69–74.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Application Note, “Polymer identification using mid infrared spectroscopy,” Perkin-Elmer, 2011, http://www.perkinelmer.com/CMSResources/Images/44132015APP_PolymerIdentificationMidInfaredSpectroscopy.pdf .

B. K. Shukla and R. H. Patel, “Simulation of paraxial beam propagation using plane wave expansion method,” in Proceedings of Recent Advances in Microwave Theory and Applications (2008), pp. 652–656.

N. Anous, D. Khalil, and A. M. E. Safwat, “The effect of Gaussian beam spot size on the performance of an SPR IR optical CO2 sensor,” in Proceedings of the 7th International Symposium on High-capacity Optical Networks and Enabling Technologies (HONET) (2010), pp. 19–21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Kretschman’s configuration of a prism-based gas sensor. SPW is the SP wave excited by the TM incident light.

Fig. 2.
Fig. 2.

Gaussian beam obliquely incident on a multilayer structure. The beam is tilted with an angle Ψ as shown.

Fig. 3.
Fig. 3.

Schematic of a general multilayer structure that can be used to represent the SPR structure.

Fig. 4.
Fig. 4.

MIM-based optical gas sensor structure, where the upper and lower metal layers are bimetallic layers of Ti (3 nm) and Au (14 nm).

Fig. 5.
Fig. 5.

(a) Performance of both the MI and MIM structures in terms of the resonance strength curves for both. The performance parameters used in this work are illustrated on the above graph. (b) Different dielectrics are investigated for the MIM structure and compared to the performance of the conventional sensor structure. The slopes of the straight lines indicate the values of EIS for both structures (conventional versus MIM). A significant enhancement of 125% is clear. This curve assumes plane wave incidence on both structures.

Fig. 6.
Fig. 6.

(a) Effect of changing the thickness of metal layers on the resonance strength and the FWHM separately in the MIM structure. (b) Overall effect of changing the thickness of the symmetric metal layer.

Fig. 7.
Fig. 7.

(a) Effect of changing the thickness of the middle dielectric layer on the resonance strength and the FWHM separately. (b) Effect of changing the thickness of the middle dielectric layer on the overall performance of the sensor.

Fig. 8.
Fig. 8.

(a) Effect of beam spot size on the sensor performance. The FWHM gets narrower as the beam waist is enlarged and approaches the case in which a single plane wave is incident. The lower the FWHM, the higher the resolution. (b) Effect of beam spot size on the sensor performance. The two dotted horizontal lines indicate the case in which a plane wave is incident on both structures.

Fig. 9.
Fig. 9.

Field profile (Hy) for a multilayer gas sensor structure at resonance.

Fig. 10.
Fig. 10.

Curves generated through theoretical computations of the plane wave expansion method are verified by comparing them to actual experimental results from [9].

Tables (1)

Tables Icon

Table 1. Comparison between Different Structures from the Performance Point of View

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

konprismsinθSPR=Re{koεmεs/(εm+εs)},
S=(ΔθSPR/Concentration%).
ESNR=(1RSPR)/FWHM,
EIS=S×ESNRwithEIS=ΔθSPR·(1RSPR)Δconcentration(%)·FWHM.
G1(kx,ky,z)=B1(kx,ky)exp(ikz1z)+A1(kx,ky)exp(ikz1z)(forz<0),
Gm(kx,ky,z)=Bm(kx,ky)exp(ikzmz)+Am(kx,ky)exp(ikzmz)(forz>0),
kzm2=km2kx2ky2,
Em(x,y,z)=kyminkymaxkxminkxmaxBm(kx,ky)exp{i(kxx+kyykzmz)}dkxdky+kyminkymaxkxminkxmaxAm(kx,ky)exp{i(kxx+kyy+kzmz)}dkxdky,
Hym=(Ameikzmz+Bmeikzmz)eikxxeikyy.
Am=12[(Am1+Bm1)+kzm1kzmεmεm1(Am1Bm1)]eikzmdm,
Bm=12[(Am1+Bm1)kzm1kzmεmεm1(Am1Bm1)]eikzmdm,
R=kyminkymaxkxminkxmaxkzsprism|Aprism(kx,ky)|2dkxdkykyminkymaxkxminkxmaxkzsprism|Bprism(kx,ky)|2dkxdky.

Metrics