S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: II. Non-isothermal cavity,” Metrologia 47, 33–46 (2010).

[CrossRef]

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

A. V. Prokhorov, “Monte Carlo method in optical radiometry,” Metrologia 35, 465–471 (1998).

[CrossRef]

J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities of black-body cavities with grooved cylinders,” Metrologia 35, 175–180 (1998).

[CrossRef]

M. J. Ballico, “Modelling of the effective emissivity of a graphite tube black body,” Metrologia 32, 259–265 (1995).

[CrossRef]

V. I. Sapritsky and A. V. Porkhorov, “Calculation of the effective emissivities of specular-diffuse cavities by the Monte Carlo Method,” Metrologia 29, 9–14 (1992).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

J. R. Howell and M. Perlmutter, “Monte Carlo solution of thermal transfer through radiant media between gray walls,” Heat Transfer 86, 116–122 (1964).

[CrossRef]

M. J. Ballico, “Modelling of the effective emissivity of a graphite tube black body,” Metrologia 32, 259–265 (1995).

[CrossRef]

R. E. Bedford, C. K. Ma, Z. X. Chu, and S. R. Chen, “Emissivities of diffuse cavities 4: Isothermal and nonisothermal cylindro-inner-cones,” Appl. Opt. 24, 2971–2980 (1985).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal double cones,” J. Opt. Soc. Am. 66, 724–730 (1976).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal cylindro-cones,” J. Opt. Soc. Am. 65, 565–572 (1975).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: isothermal and nonisothermal cones and cylinders,” J. Opt. Soc. Am. 64, 339–349 (1974).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

S. R. Chen, Z. X. Chu, and H. P. Chen, “Precise calculation of the integrated emissivity of baffled blackbody cavities,” Metrologia 16, 69–72 (1980).

[CrossRef]

R. E. Bedford, C. K. Ma, Z. X. Chu, and S. R. Chen, “Emissivities of diffuse cavities 4: Isothermal and nonisothermal cylindro-inner-cones,” Appl. Opt. 24, 2971–2980 (1985).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

S. R. Chen, Z. X. Chu, and H. P. Chen, “Precise calculation of the integrated emissivity of baffled blackbody cavities,” Metrologia 16, 69–72 (1980).

[CrossRef]

R. E. Bedford, C. K. Ma, Z. X. Chu, and S. R. Chen, “Emissivities of diffuse cavities 4: Isothermal and nonisothermal cylindro-inner-cones,” Appl. Opt. 24, 2971–2980 (1985).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

S. R. Chen, Z. X. Chu, and H. P. Chen, “Precise calculation of the integrated emissivity of baffled blackbody cavities,” Metrologia 16, 69–72 (1980).

[CrossRef]

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

K. M. Gao and Z. Xie, Theory and Technology of Infrared Radiation Temperature Measurement (Northeastern University, 1989).

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: II. Non-isothermal cavity,” Metrologia 47, 33–46 (2010).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: I. Isothermal cavity,” Metrologia 41, 421–431 (2004).

[CrossRef]

J. R. Howell and M. Perlmutter, “Monte Carlo solution of thermal transfer through radiant media between gray walls,” Heat Transfer 86, 116–122 (1964).

[CrossRef]

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor and Francis, 2002), Vol. 4.

J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities of black-body cavities with grooved cylinders,” Metrologia 35, 175–180 (1998).

[CrossRef]

J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities of black-body cavities with grooved cylinders,” Metrologia 35, 175–180 (1998).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

R. E. Bedford, C. K. Ma, Z. X. Chu, and S. R. Chen, “Emissivities of diffuse cavities 4: Isothermal and nonisothermal cylindro-inner-cones,” Appl. Opt. 24, 2971–2980 (1985).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal double cones,” J. Opt. Soc. Am. 66, 724–730 (1976).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal cylindro-cones,” J. Opt. Soc. Am. 65, 565–572 (1975).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: isothermal and nonisothermal cones and cylinders,” J. Opt. Soc. Am. 64, 339–349 (1974).

[CrossRef]

S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

J. R. Howell and M. Perlmutter, “Monte Carlo solution of thermal transfer through radiant media between gray walls,” Heat Transfer 86, 116–122 (1964).

[CrossRef]

V. I. Sapritsky and A. V. Porkhorov, “Calculation of the effective emissivities of specular-diffuse cavities by the Monte Carlo Method,” Metrologia 29, 9–14 (1992).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: II. Non-isothermal cavity,” Metrologia 47, 33–46 (2010).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: I. Isothermal cavity,” Metrologia 41, 421–431 (2004).

[CrossRef]

A. V. Prokhorov, “Monte Carlo method in optical radiometry,” Metrologia 35, 465–471 (1998).

[CrossRef]

J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities of black-body cavities with grooved cylinders,” Metrologia 35, 175–180 (1998).

[CrossRef]

V. I. Sapritsky and A. V. Porkhorov, “Calculation of the effective emissivities of specular-diffuse cavities by the Monte Carlo Method,” Metrologia 29, 9–14 (1992).

[CrossRef]

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor and Francis, 2002), Vol. 4.

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

K. M. Gao and Z. Xie, Theory and Technology of Infrared Radiation Temperature Measurement (Northeastern University, 1989).

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

H. P. Chen, T. Q. Li, S. R. Chen, and Z. X. Chu, “Calculation of effective surface emissivity of square cavities,” Chin. J. IR Res. 3, 166–171 (1984).

Z. Xie, Y. Ci, H. J. Meng, and H. Zhang, “Development of continuous temperature measuring sensor for liquid steel based on blackbody cavity,” Chin. J. Scientific Instrum. 26, 446–448, 456 (2005).

J. R. Howell and M. Perlmutter, “Monte Carlo solution of thermal transfer through radiant media between gray walls,” Heat Transfer 86, 116–122 (1964).

[CrossRef]

S. M. Zhao, G. H. Mei, J. Sun, W. Yang, and Z. Xie, “Estimation of effective diffusion coefficient of gaseous species in MgO-C refractories by shrinking core model,” ISIJ Int. 52, 1186–1195 (2012).

[CrossRef]

S. M. Zhao, G. H. Mei, J. Zhang, and Z. Xie, “Finite element analysis of composite structure continuous temperature-measuring sensor for liquid steel,” J. Northeast. Univ. Nat. Sci. 133, 926–929 (2012).

R. P. Heinisch, E. M. Sparrow, and N. Shamsundar, “Radiant emission from baffled conical cavities,” J. Opt. Soc. Am. 63, 152–158 (1973).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: isothermal and nonisothermal cones and cylinders,” J. Opt. Soc. Am. 64, 339–349 (1974).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal cylindro-cones,” J. Opt. Soc. Am. 65, 565–572 (1975).

[CrossRef]

R. E. Bedford and C. K. Ma, “Emissivities of diffuse cavities: Isothermal and nonisothermal double cones,” J. Opt. Soc. Am. 66, 724–730 (1976).

[CrossRef]

A. Ono, “Calculation of the directional emissivities of cavities by the Monte Carlo method,” J. Opt. Soc. Am. 70, 547–554 (1980).

[CrossRef]

S. R. Chen, Z. X. Chu, and H. P. Chen, “Precise calculation of the integrated emissivity of baffled blackbody cavities,” Metrologia 16, 69–72 (1980).

[CrossRef]

J. Ishii, M. Kobayashi, and F. Sakuma, “Effective emissivities of black-body cavities with grooved cylinders,” Metrologia 35, 175–180 (1998).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: I. Isothermal cavity,” Metrologia 41, 421–431 (2004).

[CrossRef]

A. V. Prokhorov and L. M. Hanssen, “Effective emissivity of a cylindrical cavity with an inclined bottom: II. Non-isothermal cavity,” Metrologia 47, 33–46 (2010).

[CrossRef]

V. I. Sapritsky and A. V. Porkhorov, “Calculation of the effective emissivities of specular-diffuse cavities by the Monte Carlo Method,” Metrologia 29, 9–14 (1992).

[CrossRef]

A. V. Prokhorov, “Monte Carlo method in optical radiometry,” Metrologia 35, 465–471 (1998).

[CrossRef]

M. J. Ballico, “Modelling of the effective emissivity of a graphite tube black body,” Metrologia 32, 259–265 (1995).

[CrossRef]

K. M. Gao and Z. Xie, Theory and Technology of Infrared Radiation Temperature Measurement (Northeastern University, 1989).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor and Francis, 2002), Vol. 4.