Abstract

Morphology evolution at microscopic scales has an inseparable relationship with surface material behaviors, especially during ultrasmooth surface fabrication. In this work, the influence of initially existing local densification on ion nanopatterning of a fused-silica surface is investigated. Our research results indicate that fused-silica surfaces will easily densify permanently under a compressive load, exhibiting an anisotropic surface at the nanoscale. During the subsequent ion-beam sputtering process, the densification-dependent sputtering would influence and even dominate surface morphology evolution, which is identified as being an important evolution mechanism. However, ion-induced relaxation mechanisms will overcome surface roughening in the absence of local densification, and an ultrasmooth surface with root mean square roughness down to 0.06 nm is obtained in our experiment.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Liao, Y. Dai, X. Xie, and L. Zhou, “Morphology evolution of fused silica surface during ion-beam figuring of high-slope optical components,” Appl. Opt. 52, 3719–3725 (2013).
    [CrossRef]
  2. U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
    [CrossRef]
  3. A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
    [CrossRef]
  4. F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
    [CrossRef]
  5. R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
    [CrossRef]
  6. P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
    [CrossRef]
  7. M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
    [CrossRef]
  8. R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
    [CrossRef]
  9. C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
    [CrossRef]
  10. T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
    [CrossRef]
  11. F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
    [CrossRef]
  12. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1390–1393 (2009).
    [CrossRef]
  13. K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
    [CrossRef]
  14. H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).
  15. T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
    [CrossRef]
  16. V. I. Shulga, “The density effects in polycrystal sputtering,” Nucl. Instrum. Methods Phys. Res. Sect. B 174, 77–90 (2001).
    [CrossRef]
  17. V. I. Shulga, “Density effects in sputtering at normal and oblique ion bombardment,” Nucl. Instrum. Methods Phys. Res. Sect. B 187, 178–188 (2002).
    [CrossRef]

2013 (1)

2010 (1)

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

2009 (3)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1390–1393 (2009).
[CrossRef]

A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

2004 (1)

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

2002 (3)

V. I. Shulga, “Density effects in sputtering at normal and oblique ion bombardment,” Nucl. Instrum. Methods Phys. Res. Sect. B 187, 178–188 (2002).
[CrossRef]

U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
[CrossRef]

M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
[CrossRef]

2001 (2)

V. I. Shulga, “The density effects in polycrystal sputtering,” Nucl. Instrum. Methods Phys. Res. Sect. B 174, 77–90 (2001).
[CrossRef]

C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
[CrossRef]

2000 (1)

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[CrossRef]

1996 (1)

R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
[CrossRef]

1994 (1)

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[CrossRef]

1988 (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

1969 (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

1965 (1)

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Augereau, F.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

Barabasi, A.

M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
[CrossRef]

Boragno, C.

U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
[CrossRef]

Bradley, R. M.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Buatier, F.

U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
[CrossRef]

Chang, K.

C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
[CrossRef]

Chason, E.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[CrossRef]

Cohen, H. M.

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Cuerno, R.

M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
[CrossRef]

Dai, Y.

Facsko, S.

A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
[CrossRef]

Fechner, R.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Flamm, D.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Frost, F.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Guin, J. P.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

Harper, J. M. E.

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Headrick, R. L.

C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
[CrossRef]

Howard, A. J.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[CrossRef]

Ji, H.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

Keller, A.

A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
[CrossRef]

Lambropoulos, J. C.

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[CrossRef]

Liao, W.

Makeev, M. A.

M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
[CrossRef]

Mayer, T. M.

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[CrossRef]

Moller, W.

A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
[CrossRef]

Rouxel, T.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

Roy, R.

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Ruffle, B.

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

Schindler, A.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Schlatmann, R.

R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
[CrossRef]

Shindler, J. D.

R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
[CrossRef]

Shulga, V. I.

V. I. Shulga, “Density effects in sputtering at normal and oblique ion bombardment,” Nucl. Instrum. Methods Phys. Res. Sect. B 187, 178–188 (2002).
[CrossRef]

V. I. Shulga, “The density effects in polycrystal sputtering,” Nucl. Instrum. Methods Phys. Res. Sect. B 174, 77–90 (2001).
[CrossRef]

Sigmund, P.

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

Umbach, C. C.

C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
[CrossRef]

Valbusa, U.

U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
[CrossRef]

Verhoeven, J.

R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
[CrossRef]

Vollner, J.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1390–1393 (2009).
[CrossRef]

Xie, X.

Xin, K.

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[CrossRef]

Zhou, L.

Ziberi, B.

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (2)

T. Rouxel, H. Ji, J. P. Guin, F. Augereau, and B. Ruffle, “Indentation deformation mechanism in glass: densification versus shear flow,” J. Appl. Phys. 107, 094903 (2010).
[CrossRef]

T. M. Mayer, E. Chason, and A. J. Howard, “Roughening instability and ion-induced viscous relaxation of SiO2 surfaces,” J. Appl. Phys. 76, 1633–1643 (1994).
[CrossRef]

J. Phys. Condens. Matter (3)

U. Valbusa, C. Boragno, and F. Buatier, “Nanostructuring surfaces by ion sputtering,” J. Phys. Condens. Matter 14, 8153–8175 (2002).
[CrossRef]

A. Keller, S. Facsko, and W. Moller, “The morphology of amorphous SiO2 surfaces during low energy ion sputtering,” J. Phys. Condens. Matter 21, 495305 (2009).
[CrossRef]

F. Frost, R. Fechner, B. Ziberi, J. Vollner, D. Flamm, and A. Schindler, “Large area smoothing of surfaces by ion bombardment: fundamentals and applications,” J. Phys. Condens. Matter 21, 224026 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. M. Bradley and J. M. E. Harper, “Theory of ripple topography induced by ion bombardment,” J. Vac. Sci. Technol. A 6, 2390–2395 (1988).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. Sect. B (4)

M. A. Makeev, R. Cuerno, and A. Barabasi, “Morphology of ion-sputtered surfaces,” Nucl. Instrum. Methods Phys. Res. Sect. B 197, 185–227 (2002).
[CrossRef]

V. I. Shulga, “The density effects in polycrystal sputtering,” Nucl. Instrum. Methods Phys. Res. Sect. B 174, 77–90 (2001).
[CrossRef]

V. I. Shulga, “Density effects in sputtering at normal and oblique ion bombardment,” Nucl. Instrum. Methods Phys. Res. Sect. B 187, 178–188 (2002).
[CrossRef]

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1390–1393 (2009).
[CrossRef]

Phys. Chem. Glasses (1)

H. M. Cohen and R. Roy, “Densification of glass at very high pressure,” Phys. Chem. Glasses 6, 149–161 (1965).

Phys. Rev. (1)

P. Sigmund, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets,” Phys. Rev. 184, 383–416 (1969).
[CrossRef]

Phys. Rev. B (1)

R. Schlatmann, J. D. Shindler, and J. Verhoeven, “Evolution of surface morphology during growth and ion erosion of thin films,” Phys. Rev. B 54, 10880–10889 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

C. C. Umbach, R. L. Headrick, and K. Chang, “Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow,” Phys. Rev. Lett. 87, 246104 (2001).
[CrossRef]

Proc. SPIE (1)

K. Xin and J. C. Lambropoulos, “Densification of fused silica: effects on nanoindentation,” Proc. SPIE 4102, 112–121 (2000).
[CrossRef]

Thin Solid Film (1)

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Film 459, 100–105 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch map of parallel-polishing.

Fig. 2.
Fig. 2.

AFM images of the sample A surface. (a) Surface morphology before IBS. (b) Surface morphology after IBS.

Fig. 3.
Fig. 3.

Experimental results of nanoindentation. (a) Load–depth curve for loading–unloading cycles suing a Berkovich indenter. (b) Young’s modulus and hardness for different penetration depth calculated from the load–depth data.

Fig. 4.
Fig. 4.

Surface morphology and the corresponding elastic modulus distribution of sample A. (a) Surface morphology. (b) Elastic modulus distribution.

Fig. 5.
Fig. 5.

AFM images of sample B and sample C surfaces during IBS. First row: (a) original morphology and (b) final morphology of sample B. Second row: (c) original morphology and (d) final morphology of sample C.

Fig. 6.
Fig. 6.

PSD functions of the sample B and C during IBS process.

Fig. 7.
Fig. 7.

Evolution of a single scratch on sample D. (a) Original surface morphology of the scratch. (b) Final surface morphology after IBS. (c) The scratch profile with a depth of 5.9 nm. (d) The scratch transforms to a raised nanowire with a height of 4.4 nm after IBS.

Tables (1)

Tables Icon

Table 1. Parallel-Polishing Parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

h(r,t)t=v+C22h(r,t)C42(2h(r,t)),
PSDh(q,t)1C(q),
v(x,y)=Mρ(x,y)NAY(x,y)F,
Y(dE/dz)ion(dE/dz)atom,

Metrics