Abstract

Numerical simulation of subaperture tool influence functions (TIF) is widely known as a critical procedure in computer-controlled optical surfacing. However, it may lack practicability in engineering because the emulation TIF (e-TIF) has some discrepancy with the practical TIF (p-TIF), and the removal rate could not be predicted by simulations. Prior to the polishing of a formal workpiece, opticians have to conduct TIF spot experiments on another sample to confirm the p-TIF with a quantitative removal rate, which is difficult and time-consuming for sequential polishing runs with different tools. This work is dedicated to applying these e-TIFs into practical engineering by making improvements from two aspects: (1) modifies the pressure distribution model of a flat-pitch polisher by finite element analysis and least square fitting methods to make the removal shape of e-TIFs closer to p-TIFs (less than 5% relative deviation validated by experiments); (2) predicts the removal rate of e-TIFs by reverse calculating the material removal volume of a pre-polishing run to the formal workpiece (relative deviations of peak and volume removal rate were validated to be less than 5%). This can omit TIF spot experiments for the particular flat-pitch tool employed and promote the direct usage of e-TIFs in the optimization of a dwell time map, which can largely save on cost and increase fabrication efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Haynam, P. J. Wegner, and J. M. Auerbach, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
    [CrossRef]
  2. D. C. Zimmerman, “Feasibility studies for the alignment of the thirty meter telescope,” Appl. Opt. 49, 3485–3498 (2010).
    [CrossRef]
  3. G. Gilmore, “European extremely large telescope: some history, and the scientific community’s preferences for wavelength,” Proc. SPIE 6986, 698607 (2008).
    [CrossRef]
  4. M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
    [CrossRef]
  5. G. Y. Yu, D. D. Walker, and H. Y. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51, 6637–6641 (2012).
    [CrossRef]
  6. Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).
  7. R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
    [CrossRef]
  8. H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
    [CrossRef]
  9. D. W. Kim and J. H. Burge, “Rigid conformal polishing tool using non-linear visco-elastic effect,” Opt. Express 18, 2242–2257 (2010).
    [CrossRef]
  10. W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” Int. J. Mod. Phys. B 13, 2205–2212 (1999).
    [CrossRef]
  11. H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
    [CrossRef]
  12. W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
    [CrossRef]
  13. T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
    [CrossRef]
  14. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S. W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11, 958–964 (2003).
    [CrossRef]
  15. H. Y. Li, D. D. Walker, G. Y. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52, 5781–5787 (2013).
    [CrossRef]
  16. H. Y. Li, D. D. Walker, G. Y. Yu, A. Sayle, W. Messelink, R. Evans, and A. Beaucamp, “Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges,” Opt. Express 21, 370–381 (2013).
    [CrossRef]
  17. D. W. Kim, W. H. Park, S. W. Kim, and J. H. Burge, “Parametric modeling of edge effects for polishing tool influence functions,” Opt. Express 17, 5656–5665 (2009).
    [CrossRef]
  18. D. W. Kim and S. W. Kim, “Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes,” Opt. Express 13, 910–917 (2005).
    [CrossRef]
  19. L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
    [CrossRef]
  20. J. F. Wu, Z. W. Lu, H. X. Zhang, and T. S. Wang, “Dwell time algorithm in ion beam figuring,” Appl. Opt. 48, 3930–3937 (2009).
    [CrossRef]
  21. D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17, 21850–21866 (2009).
    [CrossRef]
  22. A. Cordero-Davila, J. Gonzalez-Garcia, M. Pedrayes-Lopez, L. A. Aguilar-Chiu, J. Cuautle-Cortes, and C. Robledo-Sanchez, “Edge effects with the Preston equation for a circular tool and workpiece,” Appl. Opt. 43, 1250–1254 (2004).
    [CrossRef]
  23. Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
    [CrossRef]
  24. J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).
  25. R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
    [CrossRef]
  26. C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
    [CrossRef]

2014 (1)

2013 (4)

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

H. Y. Li, D. D. Walker, G. Y. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52, 5781–5787 (2013).
[CrossRef]

H. Y. Li, D. D. Walker, G. Y. Yu, A. Sayle, W. Messelink, R. Evans, and A. Beaucamp, “Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges,” Opt. Express 21, 370–381 (2013).
[CrossRef]

2012 (2)

G. Y. Yu, D. D. Walker, and H. Y. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51, 6637–6641 (2012).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

2011 (2)

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

2010 (2)

2009 (3)

2008 (2)

H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
[CrossRef]

G. Gilmore, “European extremely large telescope: some history, and the scientific community’s preferences for wavelength,” Proc. SPIE 6986, 698607 (2008).
[CrossRef]

2007 (1)

2006 (1)

R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
[CrossRef]

2005 (1)

2004 (2)

W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
[CrossRef]

A. Cordero-Davila, J. Gonzalez-Garcia, M. Pedrayes-Lopez, L. A. Aguilar-Chiu, J. Cuautle-Cortes, and C. Robledo-Sanchez, “Edge effects with the Preston equation for a circular tool and workpiece,” Appl. Opt. 43, 1250–1254 (2004).
[CrossRef]

2003 (1)

1999 (1)

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” Int. J. Mod. Phys. B 13, 2205–2212 (1999).
[CrossRef]

1992 (1)

L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
[CrossRef]

1990 (1)

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

1977 (1)

Aguilar-Chiu, L. A.

Andersen, D. S.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

Angel, J. R. P.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

Auerbach, J. M.

Avery, R.

R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
[CrossRef]

Beaucamp, A.

Brooks, D.

Burge, J. H.

Charles, L. C.

L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
[CrossRef]

Cheng, H. B.

Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
[CrossRef]

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
[CrossRef]

Cheung, C. F.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

Conradi, O.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Cordero-Davila, A.

Cuautle-Cortes, J.

Dong, Z. C.

Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
[CrossRef]

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

Egert, C. M.

L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
[CrossRef]

Evans, R.

Feng, Y. P.

Freeman, R.

Gilmore, G.

G. Gilmore, “European extremely large telescope: some history, and the scientific community’s preferences for wavelength,” Proc. SPIE 6986, 698607 (2008).
[CrossRef]

Golini, D.

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” Int. J. Mod. Phys. B 13, 2205–2212 (1999).
[CrossRef]

Gonzalez-Garcia, J.

Guo, Y. B.

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Han, J. H.

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Haynam, C. A.

Ho, L. T.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

Jones, R. A.

Kathy, W. H.

L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
[CrossRef]

Kim, D. W.

Kim, S. W.

King, A.

Kong, L. B.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

Kordonski, W.

W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
[CrossRef]

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” Int. J. Mod. Phys. B 13, 2205–2212 (1999).
[CrossRef]

Kuerz, P.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Li, H. Y.

Li, Y. G.

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Liu, G. J.

R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
[CrossRef]

Lowisch, M.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Lu, Z. W.

Martin, H. M.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

McCavana, G.

Messelink, W.

Morton, R.

Nagel, R. H.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

Park, W. H.

Pedrayes-Lopez, M.

Robledo-Sanchez, C.

Sayle, A.

Seitz, W.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Sekeres, A.

W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
[CrossRef]

Shorey, A.

W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
[CrossRef]

Tam, H. Y.

Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
[CrossRef]

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

To, S.

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

Tong, B. H.

H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
[CrossRef]

Walker, D. D.

Wang, J.

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Wang, T.

Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
[CrossRef]

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Wang, T. S.

Wegner, P. J.

West, S. C.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

Wittich, G.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Wu, J. F.

Xi, F. F.

R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
[CrossRef]

Xu, Q.

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

Yeung, Y.

H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
[CrossRef]

Young, R. S.

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

Yu, G. Y.

Zhang, H. X.

Zhang, W.

Zimmerman, D. C.

Appl. Opt. (9)

C. A. Haynam, P. J. Wegner, and J. M. Auerbach, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
[CrossRef]

D. C. Zimmerman, “Feasibility studies for the alignment of the thirty meter telescope,” Appl. Opt. 49, 3485–3498 (2010).
[CrossRef]

G. Y. Yu, D. D. Walker, and H. Y. Li, “Implementing a grolishing process in Zeeko IRP machines,” Appl. Opt. 51, 6637–6641 (2012).
[CrossRef]

Z. C. Dong, H. B. Cheng, and H. Y. Tam, “Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors,” Appl. Opt. 51, 9373–9382 (2012).

R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
[CrossRef]

H. Y. Li, D. D. Walker, G. Y. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52, 5781–5787 (2013).
[CrossRef]

J. F. Wu, Z. W. Lu, H. X. Zhang, and T. S. Wang, “Dwell time algorithm in ion beam figuring,” Appl. Opt. 48, 3930–3937 (2009).
[CrossRef]

A. Cordero-Davila, J. Gonzalez-Garcia, M. Pedrayes-Lopez, L. A. Aguilar-Chiu, J. Cuautle-Cortes, and C. Robledo-Sanchez, “Edge effects with the Preston equation for a circular tool and workpiece,” Appl. Opt. 43, 1250–1254 (2004).
[CrossRef]

Y. P. Feng, H. B. Cheng, T. Wang, Z. C. Dong, and H. Y. Tam, “Optimal strategy for fabrication of large aperture aspheric surfaces,” Appl. Opt. 53, 147–155 (2014).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

R. Avery, F. F. Xi, and G. J. Liu, “Modelling and analysis of contact stress for automated polishing,” Int. J. Mach. Tools Manuf. 46, 424–435 (2006).
[CrossRef]

Int. J. Mod. Phys. B (1)

W. Kordonski and D. Golini, “Progress update in magnetorheological finishing,” Int. J. Mod. Phys. B 13, 2205–2212 (1999).
[CrossRef]

J. Eur. Opt. Soc. (1)

J. Wang, Y. G. Li, J. H. Han, Q. Xu, and Y. B. Guo, “Evaluating subsurface damage in optical glasses,” J. Eur. Opt. Soc. 6, 11001 (2011).

J. Mater. Process. Technol. (1)

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[CrossRef]

Opt. Express (6)

Precis. Eng. (1)

C. F. Cheung, L. B. Kong, L. T. Ho, and S. To, “Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing,” Precis. Eng. 35, 574–590 (2011).
[CrossRef]

Proc. SPIE (5)

L. C. Charles, C. M. Egert, and W. H. Kathy, “Advanced matrix based algorithm for ion beam milling of optical components,” Proc. SPIE 1752, 54–62 (1992).
[CrossRef]

W. Kordonski, A. Shorey, and A. Sekeres, “New magnetically assisted finishing method: material removal with magnetorheological fluid jet,” Proc. SPIE 5180, 107–114 (2004).
[CrossRef]

H. M. Martin, D. S. Andersen, J. R. P. Angel, R. H. Nagel, S. C. West, and R. S. Young, “Progress in the stressed-lap polishing of a 1.8  m f/1 mirror,” Proc. SPIE 1236, 682–690 (1990).
[CrossRef]

G. Gilmore, “European extremely large telescope: some history, and the scientific community’s preferences for wavelength,” Proc. SPIE 6986, 698607 (2008).
[CrossRef]

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, and W. Seitz, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[CrossRef]

Prog. Nat. Sci. (1)

H. B. Cheng, Y. Yeung, and B. H. Tong, “Viscosity behavior of magnetic suspensions in fluid-assisted finishing,” Prog. Nat. Sci. 18, 91–96 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Diagram of the JR-1800. (b) Structure of polishing tool with a planetary motion model.

Fig. 2.
Fig. 2.

(a) Sketch map of planetary motion. (b) Top view of planetary motion. (c) Resultant velocity of any point M in the contacting interface.

Fig. 3.
Fig. 3.

(a) 3D geometric model and (b) mesh model.

Fig. 4.
Fig. 4.

CAD models, pressure distribution maps and related section profiles under 50N vertical force for different polishing pads with diameter (a) 30 mm; (b) 40 mm; (c) 50 mm; (d) 60 mm.

Fig. 5.
Fig. 5.

Pressure curves for polishing pads with (a) diameter from 30 to 60 mm and air force 50N. (b) Diameter 30 mm and air force from 10N to 90N.

Fig. 6.
Fig. 6.

Fitted pressure curves for polishing pads with diameter (a) 30 mm and (b) 50 mm.

Fig. 7.
Fig. 7.

Emulation removal profiles of 30 mm polishing pad with nonmodified and modified pressure models under different working parameters: (a) r0=15mm, e=11mm, f=3; (b) r0=15mm, e=12mm, f=3; (c) r0=15mm, e=11mm, f=8; (d) r0=15mm, e=12mm, f=8.

Fig. 8.
Fig. 8.

TIF spot experiment: (a) the original surface form; (b) the original interferometric pattern; (c) surface form after spot experiment; (d) interferometric pattern after spot experiment; (e) the valid datum of p-TIF; (f) the profile of p-TIF.

Fig. 9.
Fig. 9.

Removal curves of p-TIF and e-TIFs with nonmodified and modified pressure model, with tool size 30 mm; acentric distance e=12mm; air force F=50N; spinning velocity at 300 rpm; orbital velocity 100rpm; 10% wt. CeO2 slurry (2 μm size). (a) Contrastive curves in X direction. (b) Contrastive curves in Y direction.

Fig. 10.
Fig. 10.

Experimental result for reverse-calculated removal rate. (a) Surface form before pre-polishing. (b) Surface form after pre-polishing. (c) Material removal map of pre-polishing process.

Fig. 11.
Fig. 11.

Simulational results for the pre-polishing process. (a) Polishing path covers a Φ160mm region. (b) Dwell time map on the polishing path. (c) Residual surface map with all above dwell time implemented on the surface.

Fig. 12.
Fig. 12.

Contrasts of PRR and VRR between results of TIF spot experiment and reverse calculation.

Tables (1)

Tables Icon

Table 1. Mechanical Parameters of Used Materials

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

dz(x,y)=k·P(x,y)·V(x,y),
PRR=max(TIF),
VRR=i=1mj=1nTIF(i,j)·Δx·Δy.
2α0={2π,R2r0e2arccos(R22+e2r022R2e),r0e<R2r0+e0,r0+e<R2,
tM=2α0w2.
V(α)=|V(x,y)|=|V1+V2|=(V12+V22+2V1V2cosβ)1/2=((R1w1)2+(R2w2)2+2R1w1R2w2cosβ)1/2
V(α)=w2(R22+e22R2ecos(α))f2+R22+2f(R22R2ecos(α)).
Pfit(x)=i=09pixi.
PM(α)=Pfit(R1)=i=09piR1i.
TIFM=0tMPM(α)V(α)dt=α0α0(i=09piR1i)(R22+e22R2ecos(α))f2+R22+2f(R22R2ecos(α))·dα.
MR=t=0T0(TIF+ΔTIF)dtTIF·T0,
VMR=t=0T0(VRR+ΔVRR)dtVRR·T0.
PRRp=PRR0VMRT0·VRR0,
VRRp=PRRpPRR0VRR0.
PRRp=1.0*6.19318.5*0.634=0.528λ/min,
σPRR=(0.5510.528)/0.551=4.17%,
VRRp=0.528*0.634=0.338mm3,
σVRR=(0.3560.338)/0.356=5.0%.

Metrics