Abstract

High-precision topography measurement of micro-objects using interferometric and holographic techniques can be realized provided that the in-focus plane of an imaging system is very accurately determined. Therefore, in this paper we propose an accurate technique for in-focus plane determination, which is based on coherent and incoherent light. The proposed method consists of two major steps. First, a calibration of the imaging system with an amplitude object is performed with a common autofocusing method using coherent illumination, which allows for accurate localization of the in-focus plane position. In the second step, the position of the detected in-focus plane with respect to the imaging system is measured with white light interferometry. The obtained distance is used to accurately adjust a sample with the precision required for the measurement. The experimental validation of the proposed method is given for measurement of high-numerical-aperture microlenses with subwavelength accuracy.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.
  2. W. Osten, ed., Optical Inspection of Micro Systems (CRC Press, 2007).
  3. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
    [CrossRef]
  4. G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
    [CrossRef]
  5. T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VHC, 2005).
  6. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
    [CrossRef]
  7. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).
    [CrossRef]
  8. T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012).
    [CrossRef]
  9. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001).
    [CrossRef]
  10. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005).
    [CrossRef]
  11. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
    [CrossRef]
  12. B. C. Bergner and A. Davies, “Self-calibration for transmitted wavefront measurements,” Appl. Opt. 46, 18–24 (2007).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  14. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett. 35, 1840–1842 (2010).
    [CrossRef]
  15. T. Kozacki, M. Jozwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett. 36, 4419–4421 (2011).
    [CrossRef]
  16. A. Neumann, Y. Kuznetsova, and S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008).
    [CrossRef]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
    [CrossRef]
  18. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two dimensional dynamic phase grating,” Opt. Express 16, 17107–17118 (2008).
    [CrossRef]
  19. W. Bishara, T. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18, 11181–11191 (2010).
    [CrossRef]
  20. K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013).
    [CrossRef]
  21. T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
    [CrossRef]
  22. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef]
  23. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
    [CrossRef]
  24. T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
    [CrossRef]
  25. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast mi-croscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [CrossRef]
  26. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [CrossRef]
  27. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D82 (2008).
    [CrossRef]
  28. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004).
    [CrossRef]
  29. A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012).
    [CrossRef]
  30. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14, 5895–5908 (2006).
    [CrossRef]
  31. W. Li, N. C. Loomis, Q. Hu, and C. S. Davis, “Focus detection from digital in-line holograms based on spectral l1 norms,” J. Opt. Soc. Am. A 24, 3054–3062 (2007).
    [CrossRef]
  32. P. Gao, B. Yao, R. Rupp, J. Min, R. Guo, B. Ma, J. Zheng, M. Lei, S. Yan, D. Dan, and T. Ye, “Autofocusing based on wavelength dependence of diffraction in two wave-wavelength digital holographic microscopy,” Opt. Lett. 37, 1172–1174 (2012).
    [CrossRef]
  33. H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
    [CrossRef]
  34. Carl Zeiss GmbH., “Definite Focus from Carl Zeiss,” http://www.biotechniques.com/multimedia/archive/00044/Definite_Focus_from__44228a.pdf .
  35. J. Peters, “Nikon Instruments TiE-PFS Dynamic Focusing System,” Nat. Methods [Application Notes] (2008), http://www.nature.com/app_notes/nmeth/2008/082312/full/an6676.html.
  36. Leica, http://www.leica-microsystems.com/products/light-microscopes/life-science-research/inverted-microscopes/details/product/leica-dmi6000-with-adaptive-focus-control-1/downloads/ .
  37. J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).
  38. M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).
  39. K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).
  40. A. Rohrbach and W. Singer, “Scattering of a scalar field at dielectric surfaces by Born series expansion,” J. Opt. Soc. Am. A 15, 2651–2659 (1998).
    [CrossRef]
  41. J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
    [CrossRef]
  42. S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Express 15, 13640–13648 (2007).
    [CrossRef]
  43. S. Reichelt and H. Zappe, “Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing,” Appl. Opt. 44, 5786–5792 (2005).
    [CrossRef]
  44. V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
    [CrossRef]
  45. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987).
    [CrossRef]
  46. T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
    [CrossRef]
  47. S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

2013

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013).
[CrossRef]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
[CrossRef]

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[CrossRef]

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

2012

2011

2010

2009

H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
[CrossRef]

T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

2008

2007

2006

2005

2004

2003

M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).

2002

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

2001

1999

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast mi-croscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

1998

1997

T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
[CrossRef]

1992

J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).

1987

Alfieri, D.

Arroyo, M. P.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Bergner, B.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Bergner, B. C.

Bishara, W.

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Brueck, S. R. J.

Callens, N.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Charrière, F.

Chen, B.

A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012).
[CrossRef]

Colomb, T.

Coppola, G.

Coskun, A. F.

Creath, K.

J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).

Cuche, E.

Dan, D.

Davies, A.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

B. C. Bergner and A. Davies, “Self-calibration for transmitted wavefront measurements,” Appl. Opt. 46, 18–24 (2007).
[CrossRef]

Davis, C. S.

De Nicola, S.

Debaes, C.

C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.

Depeursinge, C.

Dirksen, D.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Dubois, F.

Eiju, T.

Emery, Y.

Falaggis, K.

Ferraro, P.

Finizio, A.

Fröning, P.

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Gao, P.

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

Gardner, N.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Ghim, Y.-S.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Gomez, V.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grilli, S.

Guo, R.

Hariharan, P.

Hu, Q.

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Jozwicki, R.

T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Jozwik, M.

Józwik, M.

T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Jüptner, W.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

Kemper, B.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D82 (2008).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Klages, P.

Kostencka, J.

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013).
[CrossRef]

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
[CrossRef]

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[CrossRef]

Kou, S. S.

Kozacki, T.

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[CrossRef]

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013).
[CrossRef]

T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012).
[CrossRef]

T. Kozacki, M. Jozwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett. 36, 4419–4421 (2011).
[CrossRef]

T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Kraus, B.

H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
[CrossRef]

Kreis, T.

T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VHC, 2005).

Kreuzer, H. J.

Kühn, J.

Kujawinska, M.

Kuznetsova, Y.

Langehanenberg, P.

Lei, M.

Li, W.

Liebling, M.

Lizewski, K.

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
[CrossRef]

K. Liżewski, T. Kozacki, and J. Kostencka, “Digital holographic microscope for measurement of high gradient deep topography object based on super-resolution concept,” Opt. Lett. 38, 1878–1880 (2013).
[CrossRef]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[CrossRef]

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

T. Kozacki, M. Jozwik, and K. Liżewski, “High-numerical-aperture microlens shape measurement with digital holographic microscopy,” Opt. Lett. 36, 4419–4421 (2011).
[CrossRef]

Lobera, J.

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Loomis, N. C.

Ma, B.

Marquet, P.

Medicus, K.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

Merola, F.

Meucci, R.

Mico, V.

Min, J.

Montfort, F.

Neumann, A.

Novak, E.

M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).

Oreb, B. F.

Ottevaere, H.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.

Ozcan, A.

Pakula, A.

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

Paturzo, M.

Pavillon, N.

Pedrini, G.

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Pierattini, G.

Reichelt, S.

Rohrbach, A.

Rupp, R.

Salbut, L.

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

Santoyo, F.

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Schmit, J.

M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).

Schnars, U.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Schockaert, C.

Shen, F.

Sheppard, C. J. R.

Singer, W.

Striano, V.

Su, T.

Thienpont, H.

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.

Tiziani, H.

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

Tomczewski, S.

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

Unser, M.

Van Erps, J.

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

von Bally, G.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D82 (2008).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

Wang, A.

Wayant, J. C.

J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).

Weible, K.

Wolff, H.

H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
[CrossRef]

Xu, W.

Yamaguchi, I.

Yan, S.

Yang, A.

A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012).
[CrossRef]

Yao, B.

Ye, T.

Yourassowsky, C.

Zalevsky, Z.

Zappe, H.

Zecchino, M.

M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).

Zenger, K.

H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
[CrossRef]

Zhang, T.

Zhang, Y.

A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012).
[CrossRef]

Zheng, J.

Appl. Opt.

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45, 829–835 (2006).
[CrossRef]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836–850 (2006).
[CrossRef]

F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006).
[CrossRef]

T. Kozacki, K. Falaggis, and M. Kujawinska, “Computation of diffracted fields for the case of high numerical aperture using the angular spectrum method,” Appl. Opt. 51, 7080–7088 (2012).
[CrossRef]

B. C. Bergner and A. Davies, “Self-calibration for transmitted wavefront measurements,” Appl. Opt. 46, 18–24 (2007).
[CrossRef]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast mi-croscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
[CrossRef]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D82 (2008).
[CrossRef]

S. Reichelt and H. Zappe, “Combined Twyman–Green and Mach–Zehnder interferometer for microlens testing,” Appl. Opt. 44, 5786–5792 (2005).
[CrossRef]

P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2505 (1987).
[CrossRef]

BioTechniques

H. Wolff, K. Zenger, and B. Kraus, “Progress in live-cell imaging and screening applications using Definite Focus,” BioTechniques 47, 976–978 (2009).
[CrossRef]

Int. J. Mach. Tools Manuf.

J. C. Wayant and K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manuf. 32, 5–10 (1992).

J. Biomed. Opt.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigations on living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 34005 (2006).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

V. Gomez, Y.-S. Ghim, H. Ottevaere, N. Gardner, B. Bergner, K. Medicus, A. Davies, and H. Thienpont, “Micro-optic reflection and transmission interferometer for complete microlens characterization,” Meas. Sci. Technol. 20, 025901 (2009).
[CrossRef]

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008).
[CrossRef]

Opt. Commun.

G. Pedrini, P. Fröning, H. Tiziani, and F. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164, 257–268 (1999).
[CrossRef]

J. Kostencka, T. Kozacki, and K. Liżewski, “Autofocusing method for tilted image plane detection in digital holographic microscopy,” Opt. Commun. 297, 20–26 (2013).
[CrossRef]

Opt. Eng.

T. Kreis and W. Jüptner, “Suppression of the dc term in digital holography,” Opt. Eng. 36, 2357–2360 (1997).
[CrossRef]

A. Yang, B. Chen, and Y. Zhang, “Focusing evaluation method based on wavelet transform and adaptive genetic algorithm,” Opt. Eng. 51, 023201 (2012).
[CrossRef]

Opt. Express

Opt. Laser Technol.

T. Kozacki, K. Liżewski, and J. Kostencka, “Holographic method for topography measurement of highly tilted and high numerical aperture micro structures,” Opt. Laser Technol. 49, 38–46 (2013).
[CrossRef]

Opt. Lett.

Opto-Electron. Rev.

T. Kozacki, M. Józwik, and R. Joźwicki, “Determination of optical field generated by a microlens using digital holographic method,” Opto-Electron. Rev. 17, 211–216 (2009).
[CrossRef]

Photonics Spectra

M. Zecchino, E. Novak, and J. Schmit, “Optical profiling: applications expand,” Photonics Spectra 37, 68–72 (2003).

Proc. SPIE

K. Liżewski, S. Tomczewski, J. Kostencka, and T. Kozacki, “Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement,” Proc. SPIE 8788, 87880A (2013).

S. Tomczewski, A. Pakula, J. Van Erps, H. Thienpont, and L. Salbut, “Low-coherence interferometry with polynomial interpolation on compute unified device architecture-enabled graphics processing units,” Proc. SPIE 52, 094105 (2013).

Other

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

T. Kreis, Handbook of Holographic Interferometry—Optical and Digital Methods (Wiley-VHC, 2005).

C. Debaes, H. Ottevaere, and H. Thienpont, “Microoptical components for information optics and photonics,” in Advances in Information Optics and Photonics, A. T. Friberg and R. Dändliker, eds. (PHI Learning, 2009), pp. 89–116.

W. Osten, ed., Optical Inspection of Micro Systems (CRC Press, 2007).

Carl Zeiss GmbH., “Definite Focus from Carl Zeiss,” http://www.biotechniques.com/multimedia/archive/00044/Definite_Focus_from__44228a.pdf .

J. Peters, “Nikon Instruments TiE-PFS Dynamic Focusing System,” Nat. Methods [Application Notes] (2008), http://www.nature.com/app_notes/nmeth/2008/082312/full/an6676.html.

Leica, http://www.leica-microsystems.com/products/light-microscopes/life-science-research/inverted-microscopes/details/product/leica-dmi6000-with-adaptive-focus-control-1/downloads/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Illustration of imaging configuration (MO+IL) and imaging plane defocus with respect to the substrate plane. (b),(c) Error of absolute height reconstruction Δh for defocused imaging planes Δz([10,0,1,10]μm) for simulated spherical microlenses (diameter, 200 μm; substrate refractive index, 1.5; wavelength, 0.632 μm) of (b) NA=0.03 (hMAX=3μm) and (c) and NA=0.3 (hMAX=33.3μm).

Fig. 2.
Fig. 2.

(a) Maximum (M) and (b) standard deviation (σa) values of absolute error Δh for relative defocus Δz with respect to the substrate plane. Simulated samples: spherical microlenses with diameter 200 μm and NA=0.03, NA=0.15, and NA=0.3.

Fig. 3.
Fig. 3.

(a) Percentage of the area where topography was reconstructed with M error smaller then λ/20 for spherical microlenses with NA=0.03 (dashed blue line), NA=0.15 (dotted black line), and NA=0.3 (solid red line). (b) Acceptable defocus for microlenses of NA=0.030.3 for shape reconstruction error <λ/20.

Fig. 4.
Fig. 4.

Focus curves showing the sharpness of the image as a function of the axial position Δz for different objects: (a) low-NA microlens (NA=0.03); (b) high-NA microlens (NA=0.19); and (c) 1951 USAF positive target.

Fig. 5.
Fig. 5.

Scheme of LCICDH measurement system: SP, spatial filter; P1 and P2, polarizers; HWP1 and HWP2, half wave plates; M1, M2, and M3, mirrors; C1 and C2, colimators; BS1 and BS2, beam splitter cubes; MO, microscope objective; L1 and L2, imaging optics; PZT1 and PZT2, piezotransducers; MS1 and MS2, linear translation stages.

Fig. 6.
Fig. 6.

(a) Focus detection in DHM setup with USAF target and autofocusing. (b) Measurement of relative axial positions of the USAF target and (c) front surface of MO1 using LCI. (d) Measurement of axial distance between the front surface of MO1 and (e) microlens object. (f) Final topography measurement with the holographic microscope.

Fig. 7.
Fig. 7.

Images of low-coherence light for the zero optical path difference obtained with LCI mode on (a) front surface of microscope objective MO1 placed with the USAF target, (b) front surface of the USAF target, (c) first surface of objective in the system with measured sample, and (d) substrate plane of measured microlens array.

Fig. 8.
Fig. 8.

Experimental distance measurement: (a) USAF target, MO1 and (b) sample, MO1. The presented curves show the envelopes of the intensity changes of low-coherence fringe images sampled with the axial interval ΔzRG=80nm.

Fig. 9.
Fig. 9.

Final topography reconstruction of the measured HNA microlens: (a),(d) fringe pattern; (b),(e) map of reconstructed topography; and (c),(f) cross section of topography. (a)–(c) Absolute height hMAX measurement in LCI mode. (d)–(f) Topography characterization in DH microscope mode. (f) Cross section of topography for in-focus (solid red line, B-B) and defocused Δz=[15,5,5,15]μm imaging planes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

h(x+xs)=ψ(x)(nkoko2(k02Δ2ψ)12)1,
xs=ψ(x)ψ(x)ko1(n(k02Δ2ψ)12ko)1.

Metrics