Abstract

A novel design of Au-filled photonic crystal fiber (PCF) with square lattice has been proposed in this paper. The resonance strength of the surface plasmon mode and the impacts of structural parameters of the PCF on the polarization filter characteristics are studied through the finite element method. Numerical results show that the sizes of Au wires and the symmetry of the air holes near the fiber core have a great effect on the polarization filter characteristics. In the optimization process, it was found that the resonance strengths can reach 279.10 and 399.18dB/cm at wavelengths of 1.02 μm and 1.55 μm, respectively, which can be applied in many polarization filter devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Appl. Phys. Rev. 299, 358–362 (2003).
  2. P. Russell, “Photonic crystal fibers: a historical account,” Nat. Photonics 10, 11–15 (2007).
  3. M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
    [CrossRef]
  4. H. Zhao, M. Chen, and G. Li, “Temperature dependence of the PER in PM-PCF coil,” Chin. Opt. Lett. 10, 100603 (2012).
    [CrossRef]
  5. Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
    [CrossRef]
  6. J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
    [CrossRef]
  7. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
    [CrossRef]
  8. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
    [CrossRef]
  9. A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
    [CrossRef]
  10. P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
    [CrossRef]
  11. B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
    [CrossRef]
  12. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
    [CrossRef]
  13. A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
    [CrossRef]
  14. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, “Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers,” Opt. Express 15, 16270–16278 (2007).
    [CrossRef]
  15. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
    [CrossRef]
  16. M. Koshiba, “Full-vector analysis of photonic crystal fiber using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).
  17. M. Koshiba and K. Saitoh, “Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures,” Appl. Opt. 42, 6267–6275 (2003).
    [CrossRef]
  18. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
    [CrossRef]
  19. F. Poli, M. Foroni, and M. Bottacini, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A 22, 1655–1661 (2005).
    [CrossRef]
  20. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [CrossRef]
  21. M. A. Schmidt and P. S. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008).
    [CrossRef]
  22. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
    [CrossRef]

2013 (2)

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

2012 (1)

2011 (2)

A. Nagasaki, K. Saitoh, and M. Koshiba, “Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes,” Opt. Express 19, 3799–3808 (2011).
[CrossRef]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

2010 (2)

J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

2008 (5)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

M. A. Schmidt and P. S. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
[CrossRef]

2007 (2)

2005 (3)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

F. Poli, M. Foroni, and M. Bottacini, “Single-mode regime of square-lattice photonic crystal fibers,” J. Opt. Soc. Am. A 22, 1655–1661 (2005).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

2004 (1)

M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
[CrossRef]

2003 (2)

2002 (1)

M. Koshiba, “Full-vector analysis of photonic crystal fiber using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).

2000 (1)

Alharbi, M.

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

Alkeskjold, T. T.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Bjarklev, A.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Bottacini, M.

Bradley, T. D.

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

Chen, M.

H. Zhao, M. Chen, and G. Li, “Temperature dependence of the PER in PM-PCF coil,” Chin. Opt. Lett. 10, 100603 (2012).
[CrossRef]

M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
[CrossRef]

Chen, M.-Y.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Cox, F. M.

de la Chapelle, M.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Fehri, M. F.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

Foroni, M.

Fourcade-Dutin, C.

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

Gauvreau, B.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Hassani, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

Huang, S.-S.

J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
[CrossRef]

Joly, N.

Kabashin, A.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

Koshiba, M.

Kuhlmey, B. T.

Large, M. C. J.

Lee, H. W.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Li, G.

Liou, J.-H.

J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Nagasaki, A.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Poli, F.

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Prill Sempere, L.

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers: a historical account,” Nat. Photonics 10, 11–15 (2007).

P. Russell, “Photonic crystal fibers,” Appl. Phys. Rev. 299, 358–362 (2003).

Russell, P. S.

Russell, P. St. J.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Saitoh, K.

Scharrer, M.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

Schmidt, M. A.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

M. A. Schmidt and P. S. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16, 13617–13623 (2008).
[CrossRef]

Scolari, L.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Skorobogatiy, M.

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

Sun, B.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Tsuji, Y.

Tyagi, H. K.

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16, 17227–17236 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

Uebel, P.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. St. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35, 2573–2575 (2010).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Wang, R.

Wang, Y.

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

Yu, C.-P.

J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
[CrossRef]

Yu, R.

M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
[CrossRef]

Zhang, X.

Zhang, Y.-K.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Zhao, A.

M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
[CrossRef]

Zhao, H.

Zhou, J.

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Appl. Phys. Rev. (1)

P. Russell, “Photonic crystal fibers,” Appl. Phys. Rev. 299, 358–362 (2003).

Chin. Opt. Lett. (1)

Electromagnetics (1)

A. Hassani, B. Gauvreau, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR,” Electromagnetics 28, 198–213 (2008).
[CrossRef]

High Power Laser Sci. Eng. (1)

Y. Wang, M. Alharbi, T. D. Bradley, and C. Fourcade-Dutin, “Hollow-core photonic crystal fibre for high power laser beam delivery,” High Power Laser Sci. Eng. 1, 17–18 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 819–821 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

M. Koshiba, “Full-vector analysis of photonic crystal fiber using the finite element method,” IEICE Trans. Electron. E85-C, 881–888 (2002).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

P. Russell, “Photonic crystal fibers: a historical account,” Nat. Photonics 10, 11–15 (2007).

New J. Phys. (1)

P. Uebel, M. A. Schmidt, M. Scharrer, and P. St. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” New J. Phys. 13, 063016 (2011).
[CrossRef]

Opt. Commun. (2)

M. Chen, R. Yu, and A. Zhao, “Polarization properties of rectangular lattice photonic crystal fibers,” Opt. Commun. 241, 365–370 (2004).
[CrossRef]

J.-H. Liou, S.-S. Huang, and C.-P. Yu, “Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers,” Opt. Commun. 283, 971–974 (2010).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77, 033417 (2008).
[CrossRef]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[CrossRef]

Plasmonics (1)

B. Sun, M.-Y. Chen, J. Zhou, and Y.-K. Zhang, “Surface plasmon induced polarization splitting based on dual-core photonic crystal fiber with metal wire,” Plasmonics 8, 1253–1258 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-sectional schematic of the proposed PCF.

Fig. 2.
Fig. 2.

Dispersion relation of SPP modes for various orders and the core mode and the loss spectra of the core modes.

Fig. 3.
Fig. 3.

Loss spectra of the PCFs with (a) different diameters of gold wires and (b) different diameters of four air holes.

Fig. 4.
Fig. 4.

(a) Mobile schematic of the four air holes and (b) loss spectra of the PCFs with different positions of the four air holes.

Fig. 5.
Fig. 5.

Loss spectra of the PCFs with different structural parameters.

Tables (4)

Tables Icon

Table 1. Values of the Optimized Parameters to Fit the Experimental Data of Bulk Gold

Tables Icon

Table 2. Effect of the Diameters of the Gold Wires and Four Gray Air Holes on the Resonance Strength

Tables Icon

Table 3. Effect of the Positions of the Four Gray Air Holes on the Resonance Strength

Tables Icon

Table 4. Effect of the Diameters of the Two Brown Air Holes on the Resonance Strength

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εm=εωD2ω(ωjγD)Δε·ΩL2(ω2ΩL2)jΓLω,
nm=εεmε+εm((m1)λdπ)2,
L=8.686×2πλIm(neff)×104,

Metrics