Abstract

Remote measurement of object orientation is used in various scientific fields, such as robotics, optics, and biology (e.g., optical tweezers). Roll angle is one of the three angles that describe the orientation of an object in space. A common method to measure the roll angle is based on analyzing the polarization of the backreflection of a beam. The accuracy of the measurement is degraded by low signal-to-noise ratio (SNR). The low SNR is the result of the large distance between the measurement device and the object, or due to the small backreflection cross section. We perform a laboratory experiment and derive a mathematical model for the probability density function of the measured roll angle and its expectation value. This model makes it possible to calculate the accuracy of the roll angle measurement at low SNRs. Experiments and theoretical analysis using our model were performed and good agreement between the two approaches has been found.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evaluation of the estimation accuracy of polarization-based roll angle measurement

Effie Plosker, Dima Bykhovsky, and Shlomi Arnon
Appl. Opt. 52(21) 5158-5164 (2013)

High-sensitivity roll-angle interferometer

Yanfen Le, Wenmei Hou, Kai Hu, and Kai Shi
Opt. Lett. 38(18) 3600-3603 (2013)

Small roll angle measurement using lateral shearing cyclic path polarization interferometry

Y. Pavan Kumar, Sanjib Chatterjee, and Sarvendra Singh Negi
Appl. Opt. 55(5) 979-983 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription