Abstract

We report on the fabrication of large-area microspirals in SU8 photoresist using a 6+1 beam holographic lithography (HL) technique involving the interference of six linearly polarized side beams and one circularly polarized central beam. In contrast to common photoresist-substrate (glass) configuration, the spirals are fabricated on a substrate with a precured thin SU8 photoresist. This SU8-SU8-glass configuration strengthens the attachment of the spirals to the substrate, and hence enhances the quality of the fabricated spirals. The fabricated SU8 microspirals exhibit large optical activities with a polarization rotation close to 10 deg and a circular dichroism of about 0.5 in the visible range. Our precured substrate method could lift the limitations of the HL method in fabricating large and uniform microstructures or nanostructures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef]
  2. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
    [CrossRef]
  3. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
    [CrossRef]
  4. J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasicrystals for visible wavelength by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
    [CrossRef]
  5. Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
    [CrossRef]
  6. J. Xavier and J. Joseph, “Tunable complex photonic chiral lattices by reconfigurable optical phase engineering,” Opt. Lett. 36, 403–405 (2011).
    [CrossRef]
  7. A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE, 1990).
  8. J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
    [CrossRef]
  9. K. Robble and M. J. Brett, “Chiral sculptured thin films,” Nature 384, 616 (1996).
    [CrossRef]
  10. M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
    [CrossRef]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).
    [CrossRef]
  12. M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
    [CrossRef]
  13. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
    [CrossRef]
  14. See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef]
  15. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  16. J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
    [CrossRef]
  17. C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
    [CrossRef]
  18. J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
    [CrossRef]
  19. R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
    [CrossRef]
  20. K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B29, 06FF02 (2011).

2011

J. Xavier and J. Joseph, “Tunable complex photonic chiral lattices by reconfigurable optical phase engineering,” Opt. Lett. 36, 403–405 (2011).
[CrossRef]

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
[CrossRef]

K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B29, 06FF02 (2011).

2009

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

2007

2006

R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

2005

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
[CrossRef]

J. C. W. Lee and C. T. Chan, “Polarization gaps in spiral photonic crystals,” Opt. Express 13, 8083–8088 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Square spiral 3D photonic bandgap crystals at telecommunications frequencies,” Opt. Express 13, 3348–3354 (2005).
[CrossRef]

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

2004

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

2003

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

2000

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

1997

1996

K. Robble and M. J. Brett, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Brett, M. J.

Brueck, S. R. J.

K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B29, 06FF02 (2011).

Busch, K.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Chan, C. T.

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Deuble, M.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Forester, D. W.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

Gao, W.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Hung, J.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
[CrossRef]

Jensen, M. O.

Joseph, J.

Juodkazis, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Kawata, S.

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Lee, H. F.

Lee, J. C. W.

Ma, R.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasicrystals for visible wavelength by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Maruo, S.

Matsuo, S.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Misawa, H.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Mizeikis, V.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Monzon, C.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

Nakamura, O.

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Pang, Y. K.

Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

Pereira, S.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Raub, K.

K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B29, 06FF02 (2011).

Robble, K.

K. Robble and M. J. Brett, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Rogacheva, A. V.

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Schwanecke, A. S.

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Seet, K. K.

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Sheng, P.

Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Tam, W. Y.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
[CrossRef]

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasicrystals for visible wavelength by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, “Chiral microstructures (spirals) fabrication by holographic lithography,” Opt. Express 13, 7615–7620 (2005).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

von Freymann, G.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Wang, H. Z.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Wang, X.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasicrystals for visible wavelength by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Wegener, M.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Xavier, J.

Xu, J.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasicrystals for visible wavelength by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Adv. Mater.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large area two-dimensional mesoscale quasicrystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, “Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing,” Adv. Mater. 17, 541–545 (2005).
[CrossRef]

Appl. Phys. Lett.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

R. Ma, J. Xu, and W. Y. Tam, “Wide bandgap photonic structures in dichromate gelatin emulsions,” Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

J. Opt.

J. Hung, W. Gao, and W. Y. Tam, “Optical activities of micro-spiral photonic crystals fabricated by multi-beam holographic lithography,” J. Opt. 13, 119501 (2011).
[CrossRef]

J. Vac. Sci. Technol.

K. Raub and S. R. J. Brueck, “Large area 3D helical photonic crystals,” J. Vac. Sci. Technol. B29, 06FF02 (2011).

Nat. Mater.

M. Deuble, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3, 444–447 (2004).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

K. Robble and M. J. Brett, “Chiral sculptured thin films,” Nature 384, 616 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Phys. Rev. Lett.

C. Monzon and D. W. Forester, “Negative refraction and focusing of circularly polarized waves in optically active media,” Phys. Rev. Lett. 95, 123904 (2005).
[CrossRef]

See, e.g., A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Science

J. B. Pendry, “A chiral route to negative refraction,” Science 306, 1353–1355 (2004).
[CrossRef]

Other

A. Lakhtakia, ed., Selected Papers on Natural Optical Activity (SPIE, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic setup for the 6+1 beam holographic interference. The inset shows the 6+1 beam configuration. The laser is argon-ion at 488 nm. The incidence angle ϕ is 42°.

Fig. 2.
Fig. 2.

Transmission image of SU8 spirals under crossed polarizers using a 5× objective. Holes (indicated by arrows) near locations p1–p4 are “drilled” by focused ion beam milling. The sample is broken along the white-dashed line for cross-section SEM imaging. The diameter (left to right) of the sample is 0.5cm.

Fig. 3.
Fig. 3.

(a) Normal and (b) 40° tilted SEM images at p2 in Fig. 2. (c)–(f) Cross sections at locations A–D in Fig. 2, respectively. Scales are 10 μm for black and 1 μm for white bars. Circles in (a) are regions where transmissions are taken with 100× objective.

Fig. 4.
Fig. 4.

(a) Transmittance of SU8 spirals under crossed polarizers. (b) Reflectance and (c) transmittance of linearly polarizer incident light.

Fig. 5.
Fig. 5.

Stoke’s parameters of SU8 spirals: (a), (b) polarization rotation and (c), (d) ellipticity. (a) and (c) are forward incidence while (b) and (d) are backward incidence.

Fig. 6.
Fig. 6.

Forward transmittance (left column), backward transmittance (middle column), and CD (right column) of circularly polarized incident light of SU8 spirals in Fig. 2.

Fig. 7.
Fig. 7.

Forward transmittance and CD of circularly polarized incident light of SU8 spirals near p2 in Fig. 2 [circled in Fig. 3(a)] using 100× objective.

Metrics