Abstract

We describe a class of laser resonator, incorporating a feedback collimator (FBC), that provides feedback that is mode-matched onto a higher-order lateral mode of a slab waveguide laser. In addition, this same resonator, in outcoupling, converts the stabilized higher-order lateral mode into an essentially laterally collimated output beam with a width that exceeds twice the width of the laser-active region. This output beam should have excellent beam quality. Here, we develop the FBC resonator design principles and describe both refractive and reflective versions. Finally, we compare the efficiencies and thresholds of an FBC resonator and an angled-ridge resonator applied to a broad-ridge quantum cascade laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, “Laser beams and resonators: the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1380–1388 (2000).
    [CrossRef]
  2. A. E. Siegman, “Laser beams and resonators: beyond the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1389–1399 (2000).
    [CrossRef]
  3. N. Yu, L. Diehl, E. Cubukcu, C. Pflügl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Near-field imaging of quantum cascade laser transverse modes,” Opt. Express 15, 13227–13235 (2007).
    [CrossRef]
  4. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
    [CrossRef]
  5. Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
    [CrossRef]
  6. M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
    [CrossRef]
  7. V. Raab and R. Menzel, “External resonator design for high-power laser diodes that yields 400  mW of TEM00 power,” Opt. Lett. 27, 167–169 (2002).
    [CrossRef]
  8. A. Yariv, Introduction to Optical Electronics (Holt, 1971).

2012 (1)

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

2009 (1)

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

2007 (1)

2002 (1)

2000 (2)

A. E. Siegman, “Laser beams and resonators: the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1380–1388 (2000).
[CrossRef]

A. E. Siegman, “Laser beams and resonators: beyond the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1389–1399 (2000).
[CrossRef]

1991 (1)

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Bandyopadhyay, N.

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

Bour, D.

Capasso, F.

Corzine, S.

Crozier, K. B.

Cser, J.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Cubukcu, E.

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Defreez, R. K.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Dente, G. C.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Depatie, D.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Diehl, L.

Gokden, B.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Haddadi, A.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Höfler, G.

Lu, Q. Y.

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

Menzel, R.

Moeller, C. E.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Paxton, A. H.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Pflügl, C.

Raab, V.

Razeghi, M.

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Laser beams and resonators: the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1380–1388 (2000).
[CrossRef]

A. E. Siegman, “Laser beams and resonators: beyond the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1389–1399 (2000).
[CrossRef]

Slivken, S.

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Tilton, M. L.

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

Yariv, A.

A. Yariv, Introduction to Optical Electronics (Holt, 1971).

Yu, N.

Zhu, J.

Appl. Phys. Lett. (2)

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Y. Bai, S. Slivken, Q. Y. Lu, N. Bandyopadhyay, and M. Razeghi, “Angled cavity broad area quantum cascade lasers,” Appl. Phys. Lett. 101, 081106 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. L. Tilton, G. C. Dente, A. H. Paxton, J. Cser, R. K. Defreez, C. E. Moeller, and D. Depatie, “High power, nearly diffraction limited output from a semiconductor laser with an unstable resonator,” IEEE J. Quantum Electron. 27, 2098–2108 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Siegman, “Laser beams and resonators: the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1380–1388 (2000).
[CrossRef]

A. E. Siegman, “Laser beams and resonators: beyond the 1960’s,” IEEE J. Sel. Top. Quantum Electron. 6, 1389–1399 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

A. Yariv, Introduction to Optical Electronics (Holt, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Feedback collimator design based on germanium at an index of 4.01. Note that np·sin(β)=sin(θ+β).

Fig. 2.
Fig. 2.

Reflective feedback collimator design. The spoiler blocks direct feedback along the optic axis.

Fig. 3.
Fig. 3.

Feedback collimator design in which the feedback and collimation functions are separated at opposite ends of the device. Note that n·sin(βθ)=sin(β).

Fig. 4.
Fig. 4.

Beam propagation simulation of the mode-matched feedback (left) and outcoupling (right) intensities. Results are for z=450μm, λ=4.9μm.

Fig. 5.
Fig. 5.

Angled-ridge device.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sinθ=mλ2W,
Um(x)sin(mπ(x+W/2)W).
np·sin(β)=sin(θ+β),
sinθ=mλ2nW,
n·sin(βθ)=sin(β)
ηFBClog(1R)(2aL+log(1R))ηangled-ridge12log(1R)(2aL+log(1R)+2·log(4)).

Metrics