Abstract

A switch is proposed for controlling the subluminal and superluminal light propagation through the triple coupled quantum dots system. The steady-state and transient behavior of the absorption and the dispersion of a probe pulse through a triple quantum dots molecule are investigated. We demonstrate that the group velocity of a light pulse can be controlled from subluminal to superluminal or vice versa by controlling the rates of incoherent pumping and tunneling between electronic levels. Switching time is calculated by discussing the dependency of optical transient properties on the incoherent pumping and inter-dot tunneling rates. We introduce three controlling parameters that make it possible to control the wave propagation electrically or even optically in such coupled quantum dot systems.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
    [CrossRef]
  2. H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).
  3. Z. Wang, “Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells,” Ann. Phys. 326, 340–349 (2011).
    [CrossRef]
  4. J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
    [CrossRef]
  5. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
    [CrossRef]
  6. L. A. Openov, “Resonant electron transfer between quantum dots,” Phys. Rev. B 60, 8798 (1999).
    [CrossRef]
  7. A. V. Tsukanov and L. A. Openov, “Electron transfer between semiconductor quantum dots via laser-induced resonance transitions,” Semiconductors 38, 91–98 (2004).
    [CrossRef]
  8. S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
    [CrossRef]
  9. R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
    [CrossRef]
  10. L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
    [CrossRef]
  11. R. G. Ghulghazaryan and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003).
    [CrossRef]
  12. J. D. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean? How can the group velocity of a pulse of light propagating through a dispersive material exceed the speed of light in vacuum without violating Einstein’s special theory of relativity?” Photon. Spectra 41, 82–92 (2007).
  13. V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  14. M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).
  15. A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
    [CrossRef]
  16. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
    [CrossRef]
  17. G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
    [CrossRef]
  18. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
    [CrossRef]
  19. D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
    [CrossRef]
  20. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
    [CrossRef]
  21. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
    [CrossRef]
  22. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
    [CrossRef]
  23. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
    [CrossRef]
  24. M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
    [CrossRef]
  25. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
    [CrossRef]
  26. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
    [CrossRef]
  27. A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).
  28. A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
    [CrossRef]
  29. K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
    [CrossRef]
  30. C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
    [CrossRef]
  31. J. Bardeen, “Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 57–59 (1961).
    [CrossRef]
  32. H. J. Reittu, “Fermi’s golden rule and Bardeen’s tunneling theory,” Am. J. Phys. 63, 940–943 (1995).
    [CrossRef]
  33. O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
    [CrossRef]
  34. J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
    [CrossRef]
  35. P. K. Kondratko and S.-L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963–9969 (2007).
    [CrossRef]

2011

Z. Wang, “Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells,” Ann. Phys. 326, 340–349 (2011).
[CrossRef]

2008

J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
[CrossRef]

J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
[CrossRef]

2007

P. K. Kondratko and S.-L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963–9969 (2007).
[CrossRef]

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
[CrossRef]

J. D. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean? How can the group velocity of a pulse of light propagating through a dispersive material exceed the speed of light in vacuum without violating Einstein’s special theory of relativity?” Photon. Spectra 41, 82–92 (2007).

2005

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

2004

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

A. V. Tsukanov and L. A. Openov, “Electron transfer between semiconductor quantum dots via laser-induced resonance transitions,” Semiconductors 38, 91–98 (2004).
[CrossRef]

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

2003

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

R. G. Ghulghazaryan and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

2002

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

2001

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
[CrossRef]

2000

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

1999

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

L. A. Openov, “Resonant electron transfer between quantum dots,” Phys. Rev. B 60, 8798 (1999).
[CrossRef]

1995

H. J. Reittu, “Fermi’s golden rule and Bardeen’s tunneling theory,” Am. J. Phys. 63, 940–943 (1995).
[CrossRef]

1994

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef]

1985

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef]

1961

J. Bardeen, “Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 57–59 (1961).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Bardeen, J.

J. Bardeen, “Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 57–59 (1961).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Behroozi, C. H.

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Benson, O.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Bimberg, D.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Birkedal, D.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Bortman-Arbiv, D.

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Boyd, R. W.

J. D. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean? How can the group velocity of a pulse of light propagating through a dispersive material exceed the speed of light in vacuum without violating Einstein’s special theory of relativity?” Photon. Spectra 41, 82–92 (2007).

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Campman, K. L.

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

Chiao, R. Y.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef]

Chuang, S.-L.

P. K. Kondratko and S.-L. Chuang, “Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier,” Opt. Express 15, 9963–9969 (2007).
[CrossRef]

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

Clark, S. M.

A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).

Cole, B. E.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Collett, M. J.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef]

Costantini, G.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Dawes, A.

A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).

Dey, T. N.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Dutton, Z.

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Friedmann, H.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Fry, E. S.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Gardiner, C. W.

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).

Gauthier, J. D.

J. D. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean? How can the group velocity of a pulse of light propagating through a dispersive material exceed the speed of light in vacuum without violating Einstein’s special theory of relativity?” Photon. Spectra 41, 82–92 (2007).

Ghulghazaryan, R. G.

R. G. Ghulghazaryan and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003).
[CrossRef]

Goren, C.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Gossard, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Govorov, A. O.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Hanson, M. P.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Harris, S. E.

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, V. L.

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Hvam, J. M.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Illing, L.

A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Johnson, A. C.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Kan, H.

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Kapale, K. T.

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

Kash, M. M.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Kern, K.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Kim, J.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

King, B. T.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Kocharovskaya, O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
[CrossRef]

Kondratko, P. K.

Kosionis, S. G.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
[CrossRef]

Ku, P.-C.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Laird, E. A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Leosson, K.

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

Li, J.

J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
[CrossRef]

J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
[CrossRef]

Lin, Q.

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

Liu, J.

J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
[CrossRef]

J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
[CrossRef]

Liu, N.-H.

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

Lukin, M. D.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Malakyan, Y. P.

R. G. Ghulghazaryan and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003).
[CrossRef]

Manzano, C.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Maranowski, K. D.

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Marcus, C. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Marlan, O. S.

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

Menon, S.

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Nikonov, D. E.

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Openov, L. A.

A. V. Tsukanov and L. A. Openov, “Electron transfer between semiconductor quantum dots via laser-induced resonance transitions,” Semiconductors 38, 91–98 (2004).
[CrossRef]

L. A. Openov, “Resonant electron transfer between quantum dots,” Phys. Rev. B 60, 8798 (1999).
[CrossRef]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Paspalakis, E.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Petta, J. R.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Rastelli, A.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Reittu, H. J.

H. J. Reittu, “Fermi’s golden rule and Bardeen’s tunneling theory,” Am. J. Phys. 63, 940–943 (1995).
[CrossRef]

Rosenbluh, M.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

Rostovtsev, Y.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
[CrossRef]

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Santori, C.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Sautenkov, A. S.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Schliwa, A.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Schmidt, H.

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Schmidt, O. G.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Scully, M. O.

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
[CrossRef]

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Sherwin, M. S.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Solomon, G. S.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Songmuang, R.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Stanley, C. R.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Steinberg, A. M.

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef]

Stufler, S.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Taylor, J. M.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Terzis, A. F.

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
[CrossRef]

Tsukanov, A. V.

A. V. Tsukanov and L. A. Openov, “Electron transfer between semiconductor quantum dots via laser-induced resonance transitions,” Semiconductors 38, 91–98 (2004).
[CrossRef]

Ulloa, S. E.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Villas-Bôas, J. M.

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

Vladimir, A.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Vuckovic, J.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

Wang, L.-G.

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

Wang, Z.

Z. Wang, “Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells,” Ann. Phys. 326, 340–349 (2011).
[CrossRef]

Welch, G. R.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Williams, J. B.

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Wilson-Gordon, A. D.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

Yacoby, A.

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

Yang, X.

J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
[CrossRef]

J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
[CrossRef]

Zhang, B.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

Zhang, L.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Zhu, S.-Y.

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

Zibrov, L. H.

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

Zrenner, A.

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

Zubairy, M. S.

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

Am. J. Phys.

H. J. Reittu, “Fermi’s golden rule and Bardeen’s tunneling theory,” Am. J. Phys. 63, 940–943 (1995).
[CrossRef]

Ann. Phys.

Z. Wang, “Control of the probe absorption via incoherent pumping fields in asymmetric semiconductor quantum wells,” Ann. Phys. 326, 340–349 (2011).
[CrossRef]

Europhys. Lett.

L.-G. Wang, N.-H. Liu, Q. Lin, and S.-Y. Zhu, “Effect of coherence on the superluminal propagation of light pulses through anomalously dispersive media with gain,” Europhys. Lett. 60, 834 (2002).
[CrossRef]

Laser Phys.

H. Schmidt, D. E. Nikonov, K. L. Campman, K. D. Maranowski, A. C. Gossard, and A. Imamoglu, “Quantum interference in semiconductor quantum wells,” Laser Phys. 9, 797–812 (1999).

Nature

L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000).
[CrossRef]

V. L. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature 397, 500–503 (1999).
[CrossRef]

B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin, and C. R. Stanley, “Coherent manipulation of semiconductor quantum bits with terahertz radiation,” Nature 410, 60–63 (2001).
[CrossRef]

Opt. Express

Photon. Spectra

J. D. Gauthier and R. W. Boyd, “Fast light, slow light and optical precursors: what does it all mean? How can the group velocity of a pulse of light propagating through a dispersive material exceed the speed of light in vacuum without violating Einstein’s special theory of relativity?” Photon. Spectra 41, 82–92 (2007).

Phys. E

J. Li, J. Liu, and X. Yang, “Superluminal optical soliton via resonant tunneling in coupled quantum dots,” Phys. E 40, 2916–2920 (2008).
[CrossRef]

Phys. Rev. A

R. G. Ghulghazaryan and Y. P. Malakyan, “Superluminal optical pulse propagation in nonlinear coherent media,” Phys. Rev. A 67, 063806 (2003).
[CrossRef]

G. S. Agarwal, T. N. Dey, and S. Menon, “Knob for changing light propagation from subluminal to superluminal,” Phys. Rev. A 64, 053809 (2001).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Switching from positive to negative dispersion in transparent degenerate and near-degenerate systems,” Phys. Rev. A 68, 043818 (2003).
[CrossRef]

D. Bortman-Arbiv, A. D. Wilson-Gordon, and H. Friedmann, “Phase control of group velocity: from subluminal to superluminal light propagation,” Phys. Rev. A 63, 043818 (2001).
[CrossRef]

K. T. Kapale, O. S. Marlan, S.-Y. Zhu, and M. S. Zubairy, “Quenching of spontaneous emission through interference of incoherent pump processes,” Phys. Rev. A 67, 023804 (2003).
[CrossRef]

C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems: quantum stochastic differential equations and the master equation,” Phys. Rev. A 31, 3761–3774 (1985).
[CrossRef]

A. M. Steinberg and R. Y. Chiao, “Dispersionless, highly superluminal propagation in a medium with a gain doublet,” Phys. Rev. A 49, 2071–2075 (1994).
[CrossRef]

Phys. Rev. B

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots,” Phys. Rev. B 66, 081306 (2002).
[CrossRef]

J. M. Villas-Bôas, A. O. Govorov, and S. E. Ulloa, “Coherent control of tunneling in a quantum dot molecule,” Phys. Rev. B 69, 125342 (2004).
[CrossRef]

L. A. Openov, “Resonant electron transfer between quantum dots,” Phys. Rev. B 60, 8798 (1999).
[CrossRef]

S. G. Kosionis, A. F. Terzis, and E. Paspalakis, “Optimal control of a symmetric double quantum-dot nanostructure: analytical results,” Phys. Rev. B 75, 193305 (2007).
[CrossRef]

Phys. Rev. Lett.

M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
[CrossRef]

A. Rastelli, S. Stufler, A. Schliwa, R. Songmuang, C. Manzano, G. Costantini, K. Kern, A. Zrenner, D. Bimberg, and O. G. Schmidt, “Hierarchical self-assembly of GaAs/AlGaAs quantum dots,” Phys. Rev. Lett. 92, 166104 (2004).
[CrossRef]

D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001).
[CrossRef]

J. Bardeen, “Tunneling from a many-particle point of view,” Phys. Rev. Lett. 6, 57–59 (1961).
[CrossRef]

O. Kocharovskaya, Y. Rostovtsev, and M. O. Scully, “Stopping light via hot atoms,” Phys. Rev. Lett. 86, 628 (2001).
[CrossRef]

Proc. IEEE

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” Proc. IEEE 9, 1884–1897 (2003).
[CrossRef]

Prog. Opt.

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Science

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science 309, 2180–2184 (2005).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
[CrossRef]

Semiconductors

A. V. Tsukanov and L. A. Openov, “Electron transfer between semiconductor quantum dots via laser-induced resonance transitions,” Semiconductors 38, 91–98 (2004).
[CrossRef]

Superlattices Microstruct.

J. Li, J. Liu, and X. Yang, “Controllable gain, absorption and dispersion properties of an asymmetric double quantum dot nanostructure,” Superlattices Microstruct. 44, 166–172 (2008).
[CrossRef]

Other

M. M. Kash, A. Vladimir, A. S. Sautenkov, L. H. Zibrov, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultra-slow light and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” arXiv preprint quant-ph/9904031 (1999).

A. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” arXiv preprint nlin/0506006 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of triple coupled QDs (QD1, QD2, and QD3), which shows the detailed band structure, quantized energy level, and coupling scheme for the three tunnel-coupled QDs.

Fig. 2.
Fig. 2.

Real (solid) and imaginary (dashed) parts of susceptibility as a function of normalized probe field detuning for (a) TA=0, TB=0, and R=0; (b) TA=1.5GHz, TB=0, and R=0; (c). TA=1.5GHz, TB=1.1GHz, and R=0. Other parameters are Γ10=1.6GHz, Γ20=0.1Γ10, Γ30=0.01Γ10, Γ21=0.05Γ10, Γ31=0.025Γ10, Γ32=0.05Γ10, Ω=0.11Γ10, γ10=1GHz, γ20=0.6γ10, γ30=0.01γ10, and ω12=ω23=0.

Fig. 3.
Fig. 3.

Real (solid) and imaginary (dashed) parts of susceptibility as a function of normalized probe field detuning in the presence of incoherent pumping field for (a) TA=1.5GHz, TB=0, and R=1γ10; (b) TA=1.5GHz, TB=0, and R=2.5γ10; (c) TA=1.5GHz, TB=0, and R=3γ10; (d) TA=1.5GHz, TB=1.1GHz, and R=0.2γ10; (e) TA=1.5GHz, TB=1.1GHz, and R=0.68γ10; and (f) TA=1.5GHz, TB=1.1GHz, and R=1.5γ10. Other parameters are as in Fig. 2.

Fig. 4.
Fig. 4.

Group index versus incoherent pumping field. For TA=1.5GHz, TB=0 (solid) and TA=1.5GHz, TB=1.1GHz (dashed), where δ=0.01 and other parameters are as in Fig. 2.

Fig. 5.
Fig. 5.

Dynamical behavior and switching process for dispersion: (a), (b) TA=1.5GHz, R=0, and TB=(1.1,0)GHz; (c), (d) TA=1.5GHz, TB=0, and R=(3,0)γ10; and (e), (f) TA=1.5GHz, TB=1.1GHz, and R=(1.5,0)γ10, where δ=0.01 and other parameters are as in Fig. 2.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H=H0+H1+H2+H3.
H0=ω0|00|+ω1|11|+ω2|22|+ω3|33|,
H1=Ωeiωt|10|+H.c.
H2=P1ε|01|+H.c.,
H3=TA(|21|+|12|)+TB(|32|+|23|).
W=2π|Te|2δ(EψEΦ).
Te=2mz=z0(Φ*ΨzΨΦ*z)dS,
I=4πe0eVρ1(EFeV+ε)ρ2(EF+ε)|Te|2dε.
ρt=i[H,ρ].
ρ˙00=(γ10+R)ρ11+γ20ρ22+γ30ρ33+i(Ωpρ10Ωp*ρ01)Rρ00,ρ˙11=(γ10+R)ρ11i(Ωpρ10Ωp*ρ01)+i(TA*ρ21TAρ12)+Rρ00,ρ˙22=γ20ρ22+i(TAρ12TA*ρ21)i(TBρ23TB*ρ32),ρ˙33=γ30ρ33+i(TBρ23TB*ρ32),ρ˙01=(iδΓ10R)ρ01iΩp(ρ00ρ11)iTAρ02,ρ˙02=[i(δ+ω12)Γ20]ρ02+iΩpρ12i(TA*ρ01+TBρ03),ρ˙03=[i(δ+ω12+ω23)Γ30]ρ03+iΩpρ13iTB*ρ02,ρ˙21=(iω12+Γ21)ρ21iTA(ρ22ρ11)iΩpρ20+iTB*ρ31,ρ˙31=[i(ω12+ω23)+Γ31]ρ31i(TAρ32TBρ21)iΩpρ30,ρ˙32=(iω23+Γ32)ρ32iTB(ρ33ρ22)iTA*ρ31,ρ00+ρ11+ρ22+ρ33=1,
χ=2N𝒫Eε0ρ01,
υg=c1+2πχ+2πωχω.

Metrics