Abstract

This paper describes the first application of a remote nondestructive laser ultrasonic (LU) system for clinical diagnosis of cracks in human teeth, to our knowledge. It performs non-contact cracks detection on small-dimension teeth samples. Two extracted teeth with different types of cracks (cracked tooth and craze lines), which have different crack depths, are used as experimental samples. A series of ultrasonic waves were generated by a scanning laser-line source technique and detected with a laser-Doppler vibrometer on the two samples. The B-scan images and peak-to-peak amplitude variation curves of surface acoustic waves were obtained for evaluating the cracks’ position and depth. The simulation results calculated by finite element method were combined with the experimental results for accurately measuring the depth of crack. The results demonstrate that this LU system has been successfully applied on crack evaluation of human teeth. And as a remote, nondestructive technique, it has great potential for early in vivo diagnosis of cracked tooth and even the future clinical dental tests.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Cracking the cracked tooth code,” Endodontics: Colleagues for Excellence Newsletter Fall/Winter (1997), pp. 1–13.
  2. C. D. Lynch and R. J. McConnell, “The cracked tooth syndrome,” J. Canadian Dental Assoc. 68, 470–475 (2002).
  3. D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
    [CrossRef]
  4. E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
    [CrossRef]
  5. J. D. Griffin, “Efficient, conservative treatment of symptomatic cracked teeth,” Compend. Contin. Educ. Dent. 27, 93–103 (2006).
  6. H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
    [CrossRef]
  7. J. E. Ailor, “Managing incomplete tooth fractures,” J. Am. Dent. Assoc. 131, 1168–1174 (2000).
    [CrossRef]
  8. S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
    [CrossRef]
  9. K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in IEEE Symposium onUltrasonics (IEEE, 2003), Vol. 1, pp. 799–802.
  10. K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).
  11. B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).
  12. C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
    [CrossRef]
  13. M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
    [CrossRef]
  14. C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
    [CrossRef]
  15. M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dent. 28, 187–191 (2000).
    [CrossRef]
  16. M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
    [CrossRef]
  17. J. W. Wagner, J. B. Deaton, and J. B. Spicer, “Generation of ultrasound by repetitively Q-switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
    [CrossRef]
  18. T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40, 1477–1481 (2001).
    [CrossRef]
  19. J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
    [CrossRef]
  20. A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
    [CrossRef]
  21. P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
    [CrossRef]
  22. C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
    [CrossRef]
  23. S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
    [CrossRef]
  24. D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
    [CrossRef]
  25. H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009).
    [CrossRef]
  26. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
    [CrossRef]
  27. B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
    [CrossRef]
  28. X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
    [CrossRef]
  29. L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
    [CrossRef]
  30. K. Sun, L. Yuan, Z. H. Shen, Q. P. Zhu, J. Lu, and X. W. Ni, “Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique,” Appl. Opt. 52, 6896–6905 (2013).
  31. W. Kahler, “The cracked tooth conundrum: terminology, classification, diagnosis, and management,” Am. J. Dent. 21, 275–282 (2008).
  32. H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).
  33. D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tiss. Res. 17, 129–137 (1975).
    [CrossRef]
  34. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for nondestructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
    [CrossRef]

2013 (1)

2012 (2)

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

2011 (3)

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

2010 (1)

E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
[CrossRef]

2009 (3)

2008 (2)

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

W. Kahler, “The cracked tooth conundrum: terminology, classification, diagnosis, and management,” Am. J. Dent. 21, 275–282 (2008).

2007 (1)

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

2006 (3)

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

J. D. Griffin, “Efficient, conservative treatment of symptomatic cracked teeth,” Compend. Contin. Educ. Dent. 27, 93–103 (2006).

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

2005 (2)

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

2004 (2)

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

2003 (3)

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

2002 (1)

C. D. Lynch and R. J. McConnell, “The cracked tooth syndrome,” J. Canadian Dental Assoc. 68, 470–475 (2002).

2001 (1)

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40, 1477–1481 (2001).
[CrossRef]

2000 (2)

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dent. 28, 187–191 (2000).
[CrossRef]

J. E. Ailor, “Managing incomplete tooth fractures,” J. Am. Dent. Assoc. 131, 1168–1174 (2000).
[CrossRef]

1992 (1)

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

1989 (1)

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

1988 (1)

1975 (1)

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Achenbach, J. D.

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

Ailor, J. E.

J. E. Ailor, “Managing incomplete tooth fractures,” J. Am. Dent. Assoc. 131, 1168–1174 (2000).
[CrossRef]

Ambroziak, A.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Bian, H. X.

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

Blodgett, D. W.

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

Bosch, J. J. T.

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Brandt, J.

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in IEEE Symposium onUltrasonics (IEEE, 2003), Vol. 1, pp. 799–802.

Briggs, G. A.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Brown, E. R.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Burrows, S. E.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Cui, Y. P.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Culjat, M.

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Culjat, M. O.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

Deaton, J. B.

Dixon, S.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Dong, L. M.

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

Dutton, B.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Fan, Y.

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

Ferracane, J.

E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
[CrossRef]

Fleming, S.

Fleming, S. C.

H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).

Fomitchov, P. A.

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

Griffin, J. D.

J. D. Griffin, “Efficient, conservative treatment of symptomatic cracked teeth,” Compend. Contin. Educ. Dent. 27, 93–103 (2006).

Guan, J. F.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Hein, H. J.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Hess, P.

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

Hilton, T. J.

E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
[CrossRef]

Huang, T.

H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).

Huysmans, M. C. D. N. J. M.

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dent. 28, 187–191 (2000).
[CrossRef]

Izawa, Y.

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40, 1477–1481 (2001).
[CrossRef]

John, C.

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

Kahler, W.

W. Kahler, “The cracked tooth conundrum: terminology, classification, diagnosis, and management,” Am. J. Dent. 21, 275–282 (2008).

Kang, S. Y.

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

Kempf, K.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Kimbrough, W. F.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

Krishnaswamy, S.

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

Kromin, A. K.

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

Law, S.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for nondestructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

Law, S. H.

H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).

Lee, Y. C.

Loushine, R. J.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

Lu, J.

K. Sun, L. Yuan, Z. H. Shen, Q. P. Zhu, J. Lu, and X. W. Ni, “Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique,” Appl. Opt. 52, 6896–6905 (2013).

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Lubisich, E. B.

E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
[CrossRef]

Lynch, C. D.

C. D. Lynch and R. J. McConnell, “The cracked tooth syndrome,” J. Canadian Dental Assoc. 68, 470–475 (2002).

Maev, R. G.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Maurer, P.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

McConnell, R. J.

C. D. Lynch and R. J. McConnell, “The cracked tooth syndrome,” J. Canadian Dental Assoc. 68, 470–475 (2002).

Neubrand, A.

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

Neurgaonkar, R. R.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

Ni, C. N.

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

Ni, X. W.

K. Sun, L. Yuan, Z. H. Shen, Q. P. Zhu, J. Lu, and X. W. Ni, “Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique,” Appl. Opt. 52, 6896–6905 (2013).

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Park, J. W.

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

Pashley, D. H.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

Peck, S. D.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Raum, K.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in IEEE Symposium onUltrasonics (IEEE, 2003), Vol. 1, pp. 799–802.

Rowe, J. M.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Sbin, S. J.

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

Schebert, J.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Seo, D. G.

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

Shen, Z. H.

K. Sun, L. Yuan, Z. H. Shen, Q. P. Zhu, J. Lu, and X. W. Ni, “Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique,” Appl. Opt. 52, 6896–6905 (2013).

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Singh, R. S.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Slak, B.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Spicer, J. B.

Spitzer, D.

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Strumban, E.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Sun, K.

Sun, K. H.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Sun, X. Q.

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

Swain, M.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for nondestructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

Tanaka, T.

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40, 1477–1481 (2001).
[CrossRef]

Thijssen, J. M.

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dent. 28, 187–191 (2000).
[CrossRef]

Wagner, J. W.

Waller, J.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

Wang, H. C.

H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for nondestructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).

Wang, J. J.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Weller, R. N.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

White, S. N.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

Witzel, E. A.

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

Wright, H. M.

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

Xu, B. Q.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Xue, J.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for nondestructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

Yi, Y. A.

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

Yoon, D. C.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Yuan, L.

K. Sun, L. Yuan, Z. H. Shen, Q. P. Zhu, J. Lu, and X. W. Ni, “Experimental and numerical studies for nondestructive evaluation of human enamel using laser ultrasonic technique,” Appl. Opt. 52, 6896–6905 (2013).

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Zhu, Q. P.

Acta Bioeng. Biomech. (1)

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Am. J. Dent. (1)

W. Kahler, “The cracked tooth conundrum: terminology, classification, diagnosis, and management,” Am. J. Dent. 21, 275–282 (2008).

Appl. Opt. (3)

Calcif. Tiss. Res. (1)

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calcif. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Chin. J. Lasers (1)

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Compend. Contin. Educ. Dent. (1)

J. D. Griffin, “Efficient, conservative treatment of symptomatic cracked teeth,” Compend. Contin. Educ. Dent. 27, 93–103 (2006).

Composites: Part B (1)

P. A. Fomitchov, A. K. Kromin, S. Krishnaswamy, and J. D. Achenbach, “Imaging of damage in sandwich composite structures using a scanning laser source technique,” Composites: Part B 35, 557–562 (2004).
[CrossRef]

Dent. Mater. (1)

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Dentomaxillofacial Radiol. (1)

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[CrossRef]

IEEE Trans. Med. Imaging (1)

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

J. Acoust. Soc. Am. (1)

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

J. Am. Dent. Assoc. (1)

J. E. Ailor, “Managing incomplete tooth fractures,” J. Am. Dent. Assoc. 131, 1168–1174 (2000).
[CrossRef]

J. Appl. Phys. (1)

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

J. Biomech. (1)

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

J. Biomed. Opt. (1)

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

J. Canadian Dental Assoc. (1)

C. D. Lynch and R. J. McConnell, “The cracked tooth syndrome,” J. Canadian Dental Assoc. 68, 470–475 (2002).

J. Dent. (2)

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dent. 28, 187–191 (2000).
[CrossRef]

X. Q. Sun, E. A. Witzel, H. X. Bian, and S. Y. Kang, “3-D finite element simulation for ultrasonic propagation in tooth,” J. Dent. 36, 546–553 (2008).
[CrossRef]

J. Dent. Res. (1)

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

J. Endodont. (2)

D. G. Seo, Y. A. Yi, S. J. Sbin, and J. W. Park, “Analysis of factors associated with cracked teeth,” J. Endodont. 38, 288–292 (2012).
[CrossRef]

H. M. Wright, R. J. Loushine, R. N. Weller, W. F. Kimbrough, J. Waller, and D. H. Pashley, “Identification of resected root-end dentinal cracks: a comparative study of transillumination and dyes,” J. Endodont. 30, 712–715 (2004).
[CrossRef]

J. Esthet. Restor. Dent. (1)

E. B. Lubisich, T. J. Hilton, and J. Ferracane, “Cracked teeth: a review of the literature,” J. Esthet. Restor. Dent. 22, 158–167 (2010).
[CrossRef]

J. Mech. Phys. Solids (1)

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tanaka and Y. Izawa, “Nondestructive detection of small internal defects in carbon steel by laser ultrasonics,” Jpn. J. Appl. Phys. 40, 1477–1481 (2001).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

C. N. Ni, L. M. Dong, Z. H. Shen, and J. Lu, “The experimental study of fatigue crack detection using scanning laser point source technique,” Opt. Laser Technol. 43, 1391–1397 (2011).
[CrossRef]

Ultrasonics (2)

S. Dixon, S. E. Burrows, B. Dutton, and Y. Fan, “Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection,” Ultrasonics 51, 7–16 (2011).
[CrossRef]

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

Other (3)

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in IEEE Symposium onUltrasonics (IEEE, 2003), Vol. 1, pp. 799–802.

“Cracking the cracked tooth code,” Endodontics: Colleagues for Excellence Newsletter Fall/Winter (1997), pp. 1–13.

H. C. Wang, S. H. Law, S. C. Fleming, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Australian Conference on Optical Fibre Technology/Australian Optical Society (ACOFT/AOS), Melbourne, Australia, July10–13 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Maxillary lateral incisor with cracks (labial view). (a) Craze lines on living teeth are evident [31]. (b) Two extracted teeth with cracks used for experiment.

Fig. 2.
Fig. 2.

Schematic of the SLLS technique and the model of SAW propagating on human tooth with crack.

Fig. 3.
Fig. 3.

Experimental setup for detection of cracks in human teeth by SLLS technique.

Fig. 4.
Fig. 4.

Schematic of the position of SLLS in (a) the cracked tooth, (b) the tooth with craze lines, and the corresponding ultrasound wave signals generated by SLLS at different positions in (c) the cracked tooth and (d) the tooth with craze lines.

Fig. 5.
Fig. 5.

B-scan images of ultrasound waves measured on (a) the cracked tooth and (b) the tooth with craze lines by the SLLS technique.

Fig. 6.
Fig. 6.

Frequency spectrum of SAW obtained from experimental and simulation results in human teeth.

Fig. 7.
Fig. 7.

Peak-to-peak amplitudes of SAWs generated by SLLS at different positions on (a) the cracked tooth and (b) the tooth with craze lines.

Fig. 8.
Fig. 8.

Peak-to-peak displacement of SAWs generated by SLLS at different positions on human teeth with different depth (h) cracks from simulation results.

Fig. 9.
Fig. 9.

Relationship curves between the cracks’ depth and the enhanced ratio of SAW generated by SLLS at (a) the position of the crack and (b) the position in zone I from the simulation and experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρiciTi(x,y,t)t=x(kiTi(x,y,t)x)+y(kiTi(x,y,t)y)+Q,
(1νi)Ei(1+νi)(12νi)(·Ui)Ei2(1+νi)××UiαiEi12νiTi(x,y,t)=ρi2Ui2t,
Q=AI0eβyxr0e((xx0)2/r02)tt0e(t2/t02),
dt=120fmax,Le=λmin20,
Ppeak=E2Δt·ΔS=r·E1Δt·l·w,
ηPi=APiA0i,

Metrics