A. Ahadi, A. Khoshnevis, and M. Ziad Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer,” Opt. Laser Technol. 57, 304–317 (2014).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Solution growth: developments in optical imaging and three-dimensional reconstruction,” Prog. Cryst. Growth Charact. Mater. 58, 209–278 (2012).

[CrossRef]

S. Prasanna and S. P. Venkateshan, “Heat flux and temperature field estimation using differential interferometer,” J. Heat Transfer 132, 094502 (2010).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analysis,” Appl. Opt. 47, 5408–5419 (2008).

[CrossRef]

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54, 1–120 (2008).

[CrossRef]

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420–5428 (2008).

[CrossRef]

D. Newport, C. B. Sobhan, and J. Garvey, “Digital interferometry: techniques and trends for fluid measurement,” Heat Mass Transfer 44, 535–546 (2008).

[CrossRef]

K. Okada, E. Yokoyama, and H. Miike, “Interference pattern analysis using inverse cosine function,” Electron. Commun. Jpn. 90, 61–73 (2007).

[CrossRef]

Q. Kemao, “Two dimensional windowed Fourier transform for fringe pattern analysis: principles, application and implementation,” Opt. Lasers Eng. 45, 304–317 (2007).

Q. Kemao and H. S. Seah, “Two dimensional windowed Fourier frames for noise reduction in fringe pattern analysis,” Opt. Eng. 44, 075601 (2005).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Reconstruction of the concentration field around a growing KDP crystal using schlieren tomography,” Appl. Opt. 44, 5381–5393 (2005).

[CrossRef]

A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transfer 41, 353–359 (2005).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).

[CrossRef]

S. Maki, Y. Oda, and M. Ataka, “High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet,” J. Cryst. Growth 261, 557–565 (2004).

[CrossRef]

Q. Kemao, H. S. Seah, and A. Asundi, “Filtering the complex field in phase shifting interferometry,” Opt. Eng. 42, 2792–2793 (2003).

[CrossRef]

R. Vander, S. G. Lipson, and I. Leizerson, “Fourier fringe analysis with improved spatial resolution,” Appl. Opt. 42, 6830–6837 (2003).

[CrossRef]

K. Muralidhar, “Temperature field measurement in buoyancy-driven flows using interferometric tomography,” Annu. Rev. Heat Transfer 12, 265–375 (2002).

[CrossRef]

L. Duan and J. Z. Shu, “The convection during NaClO3 crystal growth observed by the phase shift interferometer,” J. Cryst. Growth 223, 181–188 (2001).

[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid. Sci. 19, 34–48 (1999).

[CrossRef]

D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Trans. 12, 219–294 (1999).

D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh–Bernard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res. 25, 231–255 (1999).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng. 30, 229–249 (1998).

[CrossRef]

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137, 610–622 (1994).

[CrossRef]

M. Mantani, M. Sugiyama, and T. Ogawa, “Electronic measurement of concentration gradient around a crystal growing from a solution by using Mach–Zehnder interferometer,” J. Cryst. Growth 114, 71–76 (1991).

[CrossRef]

K. Onuma, K. Tsukamoto, and I. Sunagawa, “Role of buoyancy driven convection in aqueous solution growth: a case study of (BaNO3)2 crystal,” J. Cryst. Growth 89, 177–188 (1988).

[CrossRef]

A. A. Chernov, L. N. Rashkovich, and A. A. Mkrtchyan, “Interference-optical investigation of KDP, DKDP, and ADP crystal surface growth processes,” Kristallografiya 32, 737–754 (1987).

C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1653–1660 (1986).

W. R. Wilcox, “Influence of convection on the growth of crystals from solution,” J. Cryst. Growth 65, 133–142 (1983).

[CrossRef]

A. B. Whitte and R. F. Wuerker, “Laser holographic interferometry study of high-speed flow fields,” AIAA J. 8, 581–583 (1970).

[CrossRef]

D. Bradley and K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).

[CrossRef]

A. Abbott, “The monopropellant isopropyl nitrate: its characteristics and uses, and possible future applications,” in Proceedings of the 16th AIAA/SAE/ASME Joint Propulsion Conference (AIAA, 2001).

A. Ahadi, A. Khoshnevis, and M. Ziad Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer,” Opt. Laser Technol. 57, 304–317 (2014).

[CrossRef]

Q. Kemao, H. S. Seah, and A. Asundi, “Filtering the complex field in phase shifting interferometry,” Opt. Eng. 42, 2792–2793 (2003).

[CrossRef]

S. Maki, Y. Oda, and M. Ataka, “High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet,” J. Cryst. Growth 261, 557–565 (2004).

[CrossRef]

G. Domínguez-Guzmán, J. Castillo-Mixcóatl, G. Beltrán-Pérez, and S. Muñoz-Aguirre, “Itoh algorithm to unwrap 2-D phase,” in Seventh Symposium on Optics in Industry, (International Society for Optics and Photonics, 2009), p. 74990H.

D. Bradley and K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).

[CrossRef]

G. Domínguez-Guzmán, J. Castillo-Mixcóatl, G. Beltrán-Pérez, and S. Muñoz-Aguirre, “Itoh algorithm to unwrap 2-D phase,” in Seventh Symposium on Optics in Industry, (International Society for Optics and Photonics, 2009), p. 74990H.

A. A. Chernov, L. N. Rashkovich, and A. A. Mkrtchyan, “Interference-optical investigation of KDP, DKDP, and ADP crystal surface growth processes,” Kristallografiya 32, 737–754 (1987).

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

G. Domínguez-Guzmán, J. Castillo-Mixcóatl, G. Beltrán-Pérez, and S. Muñoz-Aguirre, “Itoh algorithm to unwrap 2-D phase,” in Seventh Symposium on Optics in Industry, (International Society for Optics and Photonics, 2009), p. 74990H.

L. Duan and J. Z. Shu, “The convection during NaClO3 crystal growth observed by the phase shift interferometer,” J. Cryst. Growth 223, 181–188 (2001).

[CrossRef]

D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Trans. 12, 219–294 (1999).

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420–5428 (2008).

[CrossRef]

Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analysis,” Appl. Opt. 47, 5408–5419 (2008).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

D. Newport, C. B. Sobhan, and J. Garvey, “Digital interferometry: techniques and trends for fluid measurement,” Heat Mass Transfer 44, 535–546 (2008).

[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping Theory, Algorithm and Software (Wiley, 1998).

R. Goldstein, Fluid Mechanics Measurements, 2nd ed. (Taylor & Francis, 1996).

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137, 610–622 (1994).

[CrossRef]

Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analysis,” Appl. Opt. 47, 5408–5419 (2008).

[CrossRef]

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420–5428 (2008).

[CrossRef]

Q. Kemao, “Two dimensional windowed Fourier transform for fringe pattern analysis: principles, application and implementation,” Opt. Lasers Eng. 45, 304–317 (2007).

Q. Kemao and H. S. Seah, “Two dimensional windowed Fourier frames for noise reduction in fringe pattern analysis,” Opt. Eng. 44, 075601 (2005).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

Q. Kemao, H. S. Seah, and A. Asundi, “Filtering the complex field in phase shifting interferometry,” Opt. Eng. 42, 2792–2793 (2003).

[CrossRef]

A. Ahadi, A. Khoshnevis, and M. Ziad Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer,” Opt. Laser Technol. 57, 304–317 (2014).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

R. Vander, S. G. Lipson, and I. Leizerson, “Fourier fringe analysis with improved spatial resolution,” Appl. Opt. 42, 6830–6837 (2003).

[CrossRef]

S. Kostianovski, S. G. Lipson, and E. N. Ribak, “Interference microscopy and Fourier fringe analysis applied to measuring the spatial refractive-index distribution,” Appl. Opt. 32, 4744–4750 (1993).

[CrossRef]

S. Maki, Y. Oda, and M. Ataka, “High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet,” J. Cryst. Growth 261, 557–565 (2004).

[CrossRef]

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. (Academic, 1999).

M. Mantani, M. Sugiyama, and T. Ogawa, “Electronic measurement of concentration gradient around a crystal growing from a solution by using Mach–Zehnder interferometer,” J. Cryst. Growth 114, 71–76 (1991).

[CrossRef]

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid. Sci. 19, 34–48 (1999).

[CrossRef]

D. Bradley and K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).

[CrossRef]

K. Okada, E. Yokoyama, and H. Miike, “Interference pattern analysis using inverse cosine function,” Electron. Commun. Jpn. 90, 61–73 (2007).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh–Bernard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res. 25, 231–255 (1999).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng. 30, 229–249 (1998).

[CrossRef]

A. A. Chernov, L. N. Rashkovich, and A. A. Mkrtchyan, “Interference-optical investigation of KDP, DKDP, and ADP crystal surface growth processes,” Kristallografiya 32, 737–754 (1987).

G. Domínguez-Guzmán, J. Castillo-Mixcóatl, G. Beltrán-Pérez, and S. Muñoz-Aguirre, “Itoh algorithm to unwrap 2-D phase,” in Seventh Symposium on Optics in Industry, (International Society for Optics and Photonics, 2009), p. 74990H.

D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh–Bernard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res. 25, 231–255 (1999).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng. 30, 229–249 (1998).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Solution growth: developments in optical imaging and three-dimensional reconstruction,” Prog. Cryst. Growth Charact. Mater. 58, 209–278 (2012).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Reconstruction of the concentration field around a growing KDP crystal using schlieren tomography,” Appl. Opt. 44, 5381–5393 (2005).

[CrossRef]

A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transfer 41, 353–359 (2005).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

K. Muralidhar, “Temperature field measurement in buoyancy-driven flows using interferometric tomography,” Annu. Rev. Heat Transfer 12, 265–375 (2002).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh–Bernard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res. 25, 231–255 (1999).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng. 30, 229–249 (1998).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Trans. 12, 219–294 (1999).

D. Newport, C. B. Sobhan, and J. Garvey, “Digital interferometry: techniques and trends for fluid measurement,” Heat Mass Transfer 44, 535–546 (2008).

[CrossRef]

S. Maki, Y. Oda, and M. Ataka, “High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet,” J. Cryst. Growth 261, 557–565 (2004).

[CrossRef]

M. Mantani, M. Sugiyama, and T. Ogawa, “Electronic measurement of concentration gradient around a crystal growing from a solution by using Mach–Zehnder interferometer,” J. Cryst. Growth 114, 71–76 (1991).

[CrossRef]

K. Okada, E. Yokoyama, and H. Miike, “Interference pattern analysis using inverse cosine function,” Electron. Commun. Jpn. 90, 61–73 (2007).

[CrossRef]

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137, 610–622 (1994).

[CrossRef]

K. Onuma, K. Tsukamoto, and I. Sunagawa, “Role of buoyancy driven convection in aqueous solution growth: a case study of (BaNO3)2 crystal,” J. Cryst. Growth 89, 177–188 (1988).

[CrossRef]

S. Ostrach, “An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force,” (1953).

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Solution growth: developments in optical imaging and three-dimensional reconstruction,” Prog. Cryst. Growth Charact. Mater. 58, 209–278 (2012).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Reconstruction of the concentration field around a growing KDP crystal using schlieren tomography,” Appl. Opt. 44, 5381–5393 (2005).

[CrossRef]

A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transfer 41, 353–359 (2005).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

S. Prasanna and S. P. Venkateshan, “Heat flux and temperature field estimation using differential interferometer,” J. Heat Transfer 132, 094502 (2010).

[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping Theory, Algorithm and Software (Wiley, 1998).

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

A. A. Chernov, L. N. Rashkovich, and A. A. Mkrtchyan, “Interference-optical investigation of KDP, DKDP, and ADP crystal surface growth processes,” Kristallografiya 32, 737–754 (1987).

C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1653–1660 (1986).

C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1653–1660 (1986).

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

Q. Kemao and H. S. Seah, “Two dimensional windowed Fourier frames for noise reduction in fringe pattern analysis,” Opt. Eng. 44, 075601 (2005).

[CrossRef]

Q. Kemao, H. S. Seah, and A. Asundi, “Filtering the complex field in phase shifting interferometry,” Opt. Eng. 42, 2792–2793 (2003).

[CrossRef]

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).

[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid. Sci. 19, 34–48 (1999).

[CrossRef]

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54, 1–120 (2008).

[CrossRef]

L. Duan and J. Z. Shu, “The convection during NaClO3 crystal growth observed by the phase shift interferometer,” J. Cryst. Growth 223, 181–188 (2001).

[CrossRef]

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).

[CrossRef]

D. Newport, C. B. Sobhan, and J. Garvey, “Digital interferometry: techniques and trends for fluid measurement,” Heat Mass Transfer 44, 535–546 (2008).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Solution growth: developments in optical imaging and three-dimensional reconstruction,” Prog. Cryst. Growth Charact. Mater. 58, 209–278 (2012).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transfer 41, 353–359 (2005).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Reconstruction of the concentration field around a growing KDP crystal using schlieren tomography,” Appl. Opt. 44, 5381–5393 (2005).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

M. Mantani, M. Sugiyama, and T. Ogawa, “Electronic measurement of concentration gradient around a crystal growing from a solution by using Mach–Zehnder interferometer,” J. Cryst. Growth 114, 71–76 (1991).

[CrossRef]

K. Onuma, K. Tsukamoto, and I. Sunagawa, “Role of buoyancy driven convection in aqueous solution growth: a case study of (BaNO3)2 crystal,” J. Cryst. Growth 89, 177–188 (1988).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid. Sci. 19, 34–48 (1999).

[CrossRef]

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137, 610–622 (1994).

[CrossRef]

K. Onuma, K. Tsukamoto, and I. Sunagawa, “Role of buoyancy driven convection in aqueous solution growth: a case study of (BaNO3)2 crystal,” J. Cryst. Growth 89, 177–188 (1988).

[CrossRef]

S. Prasanna and S. P. Venkateshan, “Heat flux and temperature field estimation using differential interferometer,” J. Heat Transfer 132, 094502 (2010).

[CrossRef]

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54, 1–120 (2008).

[CrossRef]

Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analysis,” Appl. Opt. 47, 5408–5419 (2008).

[CrossRef]

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420–5428 (2008).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

A. B. Whitte and R. F. Wuerker, “Laser holographic interferometry study of high-speed flow fields,” AIAA J. 8, 581–583 (1970).

[CrossRef]

W. R. Wilcox, “Influence of convection on the growth of crystals from solution,” J. Cryst. Growth 65, 133–142 (1983).

[CrossRef]

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

A. B. Whitte and R. F. Wuerker, “Laser holographic interferometry study of high-speed flow fields,” AIAA J. 8, 581–583 (1970).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

K. Okada, E. Yokoyama, and H. Miike, “Interference pattern analysis using inverse cosine function,” Electron. Commun. Jpn. 90, 61–73 (2007).

[CrossRef]

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

A. Ahadi, A. Khoshnevis, and M. Ziad Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer,” Opt. Laser Technol. 57, 304–317 (2014).

[CrossRef]

A. B. Whitte and R. F. Wuerker, “Laser holographic interferometry study of high-speed flow fields,” AIAA J. 8, 581–583 (1970).

[CrossRef]

K. Muralidhar, “Temperature field measurement in buoyancy-driven flows using interferometric tomography,” Annu. Rev. Heat Transfer 12, 265–375 (2002).

[CrossRef]

Q. Kemao, W. Gao, and H. Wang, “Windowed Fourier-filtered and quality-guided phase-unwrapping algorithm,” Appl. Opt. 47, 5420–5428 (2008).

[CrossRef]

C. Roddier and F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1653–1660 (1986).

J. J. Snyder, “Algorithm for fast digital analysis of interference fringes,” Appl. Opt. 19, 1223–1225 (1980).

[CrossRef]

Q. Kemao, H. Wang, and W. Gao, “Windowed Fourier transform for fringe pattern analysis: theoretical analysis,” Appl. Opt. 47, 5408–5419 (2008).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

S. Kostianovski, S. G. Lipson, and E. N. Ribak, “Interference microscopy and Fourier fringe analysis applied to measuring the spatial refractive-index distribution,” Appl. Opt. 32, 4744–4750 (1993).

[CrossRef]

R. Vander, S. G. Lipson, and I. Leizerson, “Fourier fringe analysis with improved spatial resolution,” Appl. Opt. 42, 6830–6837 (2003).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Reconstruction of the concentration field around a growing KDP crystal using schlieren tomography,” Appl. Opt. 44, 5381–5393 (2005).

[CrossRef]

J. A. Qi, W. O. Wong, C. W. Lang, and D. W. Yuen, “Temperature field measurement of a premixed butane flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).

[CrossRef]

K. Okada, E. Yokoyama, and H. Miike, “Interference pattern analysis using inverse cosine function,” Electron. Commun. Jpn. 90, 61–73 (2007).

[CrossRef]

D. Naylor and N. Duarte, “Direct temperature gradient measurement using interferometry,” Exp. Heat Trans. 12, 219–294 (1999).

S. Maruyama, T. Shibata, and K. Tsukamoto, “Measurement of diffusion fields of solutions using real-time phase-shift interferometer and rapid heat-transfer control system,” Exp. Therm. Fluid. Sci. 19, 34–48 (1999).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Experimental study of Rayleigh–Bernard convection at intermediate Rayleigh numbers using interferometric tomography,” Fluid Dyn. Res. 25, 231–255 (1999).

[CrossRef]

A. Srivastava, P. K. Panigrahi, and K. Muralidhar, “Interferometric study of buoyancy-driven convection in a differentially heated circular fluid layer,” Heat Mass Transfer 41, 353–359 (2005).

[CrossRef]

D. Newport, C. B. Sobhan, and J. Garvey, “Digital interferometry: techniques and trends for fluid measurement,” Heat Mass Transfer 44, 535–546 (2008).

[CrossRef]

A. Srivastava, K. Tsukamoto, E. Yokoyama, K. Murayama, and M. Fukuyama, “Fourier analysis based phase shift interferometric tomography for three-dimensional reconstruction of concentration field around a growing crystal,” J. Cryst. Growth 312, 2254–2262 (2010).

[CrossRef]

M. Mantani, M. Sugiyama, and T. Ogawa, “Electronic measurement of concentration gradient around a crystal growing from a solution by using Mach–Zehnder interferometer,” J. Cryst. Growth 114, 71–76 (1991).

[CrossRef]

K. Onuma, T. Kameyama, and K. Tsukamoto, “In situ study of surface phenomena by real time phase shift interferometry,” J. Cryst. Growth 137, 610–622 (1994).

[CrossRef]

L. Duan and J. Z. Shu, “The convection during NaClO3 crystal growth observed by the phase shift interferometer,” J. Cryst. Growth 223, 181–188 (2001).

[CrossRef]

W. R. Wilcox, “Influence of convection on the growth of crystals from solution,” J. Cryst. Growth 65, 133–142 (1983).

[CrossRef]

S. Maki, Y. Oda, and M. Ataka, “High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet,” J. Cryst. Growth 261, 557–565 (2004).

[CrossRef]

W. Pan, J. Xu, K. Tsukamoto, M. Koizumi, T. Yamazaki, R. Zhou, A. Li, and Y. Fu, “Crystal growth of hen egg-white lysozyme (HEWL) under various gravity conditions,” J. Cryst. Growth 377, 43–50 (2013).

[CrossRef]

K. Onuma, K. Tsukamoto, and I. Sunagawa, “Role of buoyancy driven convection in aqueous solution growth: a case study of (BaNO3)2 crystal,” J. Cryst. Growth 89, 177–188 (1988).

[CrossRef]

S. Prasanna and S. P. Venkateshan, “Heat flux and temperature field estimation using differential interferometer,” J. Heat Transfer 132, 094502 (2010).

[CrossRef]

D. Bradley and K. J. Matthews, “Measurement of high gas temperatures with fine wire thermocouples,” J. Mech. Eng. Sci. 10, 299–305 (1968).

[CrossRef]

M. Servin, R. Rodriguez-Vera, J. L. Marraquin, and D. Malacara, “Phase-shifting interferometry using a two dimensional regularized phase tracking technique,” J. Mod. Opt. 45, 1809–1819 (1998).

[CrossRef]

A. A. Chernov, L. N. Rashkovich, and A. A. Mkrtchyan, “Interference-optical investigation of KDP, DKDP, and ADP crystal surface growth processes,” Kristallografiya 32, 737–754 (1987).

P. Singh, M. S. Faridi, and C. Shakher, “Measurement of temperature of an axisymmetric flame using shearing interferometry and Fourier fringe analysis technique,” Opt. Eng. 43, 387–392 (2004).

[CrossRef]

Q. Kemao, H. S. Seah, and A. Asundi, “Filtering the complex field in phase shifting interferometry,” Opt. Eng. 42, 2792–2793 (2003).

[CrossRef]

Q. Kemao and H. S. Seah, “Two dimensional windowed Fourier frames for noise reduction in fringe pattern analysis,” Opt. Eng. 44, 075601 (2005).

[CrossRef]

Y. Zhang, J. Zhao, J. Di, H. Jiang, Q. Wang, J. Wang, Y. Gao, and D. Yin, “Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry,” Opt. Express 20, 18415–18421 (2012).

[CrossRef]

A. Ahadi, A. Khoshnevis, and M. Ziad Saghir, “Windowed Fourier transform as an essential digital interferometry tool to study coupled heat and mass transfer,” Opt. Laser Technol. 57, 304–317 (2014).

[CrossRef]

D. Mishra, K. Muralidhar, and P. Munshi, “Performance evaluation of fringe thinning algorithms for interferometric tomography,” Opt. Lasers Eng. 30, 229–249 (1998).

[CrossRef]

A. Srivastava, A. Phukan, P. Panigrahi, and K. Muralidhar, “Imaging of a convective field in a rectangular cavity using interferometry, schlieren and shadowgraph,” Opt. Lasers Eng. 42, 469–485 (2004).

[CrossRef]

Q. Kemao, “Two dimensional windowed Fourier transform for fringe pattern analysis: principles, application and implementation,” Opt. Lasers Eng. 45, 304–317 (2007).

S. Verma and P. J. Shlichta, “Imaging techniques for mapping solution parameters, growth rate, and surface features during the growth of crystals from solution,” Prog. Cryst. Growth Charact. Mater. 54, 1–120 (2008).

[CrossRef]

A. Srivastava, K. Muralidhar, and P. K. Panigrahi, “Solution growth: developments in optical imaging and three-dimensional reconstruction,” Prog. Cryst. Growth Charact. Mater. 58, 209–278 (2012).

[CrossRef]

S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. (Academic, 1999).

S. Ostrach, “An analysis of laminar free-convection flow and heat transfer about a flat plate parallel to the direction of the generating body force,” (1953).

A. Abbott, “The monopropellant isopropyl nitrate: its characteristics and uses, and possible future applications,” in Proceedings of the 16th AIAA/SAE/ASME Joint Propulsion Conference (AIAA, 2001).

G. Domínguez-Guzmán, J. Castillo-Mixcóatl, G. Beltrán-Pérez, and S. Muñoz-Aguirre, “Itoh algorithm to unwrap 2-D phase,” in Seventh Symposium on Optics in Industry, (International Society for Optics and Photonics, 2009), p. 74990H.

D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping Theory, Algorithm and Software (Wiley, 1998).

QG is a path-following method that requires a quality map for its processing which it utilizes to follow an integration path where pixels of higher quality are unwrapped before pixels of lower quality [20]. In the context of the present work, after WFF, the amplitude of the signal has been used as the quality map since it is seen that the low quality or corrupted pixels in the interferogram also possess low amplitude.

R. Goldstein, Fluid Mechanics Measurements, 2nd ed. (Taylor & Francis, 1996).