Abstract

An improved synchronization between the radio frequency (RF) signal and the image detector in an acousto-optic tunable filter (AOTF) imaging spectrometer is proposed to optimize power consumption and eliminate image smear. The RF signal is controlled on and off alternately to match the exposure of the image sensor. This scheme reduces the RF power and rejects the light illumination on the image sensor in the interval of charge transfer. An experiment using a visible AOTF, a frame transfer charge-coupled device camera, and an incandescent lamp is conducted for demonstration. The average RF power decreases 7.6%, and the image smear is eliminated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
    [CrossRef]
  2. Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001).
    [CrossRef]
  3. V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
    [CrossRef]
  4. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef]
  5. D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52, 389–396 (2003).
  6. J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
    [CrossRef]
  7. N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applicationsinstrument design point of view,” J. Biomed. Opt. 10, 051802 (2005).
    [CrossRef]
  8. N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752–2759 (2004).
    [CrossRef]
  9. Q. Li, D. Xu, X. He, Y. Wang, Z. Chen, H. Liu, Q. Xu, and F. Guo, “AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry,” Appl. Opt. 52, 3891–3901 (2013).
    [CrossRef]
  10. G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
    [CrossRef]
  11. N. Gupta, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033–1038 (2002).
    [CrossRef]
  12. J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
    [CrossRef]
  13. E. Dekemper, N. Loodts, B. V. Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. D. Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt. 51, 6259–6267 (2012).
    [CrossRef]
  14. J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.
  15. J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
    [CrossRef]
  16. S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
    [CrossRef]
  17. Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
    [CrossRef]
  18. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
    [CrossRef]
  19. G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, 1998).
  20. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, 2001).
  21. J. Nieke, M. Solbrig, and A. Neumann, “Noise contributions for imaging spectrometers,” Appl. Opt. 38, 5191–5194 (1999).
    [CrossRef]
  22. A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).
  23. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
    [CrossRef]
  24. V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).
  25. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  26. W. Ruyten, “Smear correction for frame transfer charge-coupled-device cameras,” Opt. Lett. 24, 878–880 (1999).
    [CrossRef]
  27. K. Powell, D. Chana, D. Fish, and C. Thompson, “Restoration and frequency analysis of smeared CCD images,” Appl. Opt. 38, 1343–1347 (1999).
    [CrossRef]
  28. D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43, 1255–1260 (2004).
    [CrossRef]
  29. J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
    [CrossRef]
  30. V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
    [CrossRef]
  31. O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
    [CrossRef]

2013 (1)

2012 (1)

2010 (1)

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

2008 (1)

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

2006 (3)

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

2005 (3)

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applicationsinstrument design point of view,” J. Biomed. Opt. 10, 051802 (2005).
[CrossRef]

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

2004 (2)

2003 (1)

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52, 389–396 (2003).

2002 (2)

G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
[CrossRef]

N. Gupta, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033–1038 (2002).
[CrossRef]

2001 (1)

Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001).
[CrossRef]

1999 (3)

1998 (1)

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

1996 (1)

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

1994 (1)

1991 (1)

V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).

1981 (1)

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

1974 (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

1970 (1)

Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Aballea, L.

Alchanatis, V.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

Amorós-López, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Balakshy, V.

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Bergstralh, J.

Bertaux, J. L.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Bingen, C.

Blaney, D. L.

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52, 389–396 (2003).

Calleja, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Calpe, J.

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Calpea, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

Calpe-Maravilla, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Chana, D.

Chang, I. C.

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Chen, Z.

Connell, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Dekemper, E.

Denes, L. J.

Dennis, R. P.

A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).

Dimarellis, E.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Dubois, J. P.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Duran-Bosch, V.

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Durán-Bosch, V.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

Fedorova, A. A.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Fish, D.

Franssens, G.

Fussen, D.

Gastellu-Etchegorry, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Georgiev, G.

Glenar, D. A.

Gómez, L.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Gómez-Chova, L.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Gondet, B.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).

Grigoriev, A. V.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Guo, F.

Gupta, N.

N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applicationsinstrument design point of view,” J. Biomed. Opt. 10, 051802 (2005).
[CrossRef]

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752–2759 (2004).
[CrossRef]

D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43, 1255–1260 (2004).
[CrossRef]

N. Gupta, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033–1038 (2002).
[CrossRef]

He, X.

Hetzroni, A.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

Hillman, J. J.

Holst, G. C.

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, 1998).

Inoue, Y.

Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001).
[CrossRef]

Janesick, J. R.

J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, 2001).

Jiang, Y.

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

Kalinnikov, Y. K.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Karasev, V.

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Kiselev, A. V.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Klaren, A.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

Korablev, O. I.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Leavesley, S.

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

Li, Q.

Liu, H.

Loodts, N.

Maes, J.

Marchant, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Mateshvili, N.

Mironov, O. V.

V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).

Molchanov, V.

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Moroz, V. I.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Mulqueen, M.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Munoz-Mari, J.

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Muñoz-Mari, J.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

Muñz, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

Neumann, A.

Nieke, J.

Ohmachi, Y.

Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Opstal, B. V.

Patsekin, V.

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

Penuelas, J.

Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001).
[CrossRef]

Pieroux, D.

Pla, F.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Powell, K.

Rajwa, B.

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

Reberac, A.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Ribes-Gomez, E.

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Ribes-Gómez, E.

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

Ridel, L.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

Robert, C.

Robinson, J. P.

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

Rodin, A. V.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Romier, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Ruyten, W.

Saif, B.

Selves, J.

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Semenkov, V.

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Sergei, V. K.

A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).

Solbrig, M.

Stepanov, A. V.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Suhre, D. R.

Tajahuerce-Romera, E.

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Thompson, C.

Trots, E. V.

V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).

Uchida, N.

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

Van Ransbeeck, E.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Vanhellemont, F.

Vázquez, S.

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Vila, J.

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

Vila-Francés, J.

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Voloshinov, V.

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752–2759 (2004).
[CrossRef]

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Voloshinov, V. B.

V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).

Vos, L. D.

Wang, Y.

Xu, D.

Xu, Q.

Yaroslavsky, L.

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

Zhegulev, V. S.

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Acta Astronaut. (1)

D. A. Glenar, D. L. Blaney, and J. J. Hillman, “AIMS: acousto-optic imaging spectrometer for spectral mapping of solid surfaces,” Acta Astronaut. 52, 389–396 (2003).

Appl. Opt. (8)

E. Dekemper, N. Loodts, B. V. Opstal, J. Maes, F. Vanhellemont, N. Mateshvili, G. Franssens, D. Pieroux, C. Bingen, C. Robert, L. D. Vos, L. Aballea, and D. Fussen, “Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain,” Appl. Opt. 51, 6259–6267 (2012).
[CrossRef]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
[CrossRef]

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43, 2752–2759 (2004).
[CrossRef]

Q. Li, D. Xu, X. He, Y. Wang, Z. Chen, H. Liu, Q. Xu, and F. Guo, “AOTF based molecular hyperspectral imaging system and its applications on nerve morphometry,” Appl. Opt. 52, 3891–3901 (2013).
[CrossRef]

G. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
[CrossRef]

J. Nieke, M. Solbrig, and A. Neumann, “Noise contributions for imaging spectrometers,” Appl. Opt. 38, 5191–5194 (1999).
[CrossRef]

K. Powell, D. Chana, D. Fish, and C. Thompson, “Restoration and frequency analysis of smeared CCD images,” Appl. Opt. 38, 1343–1347 (1999).
[CrossRef]

D. R. Suhre, L. J. Denes, and N. Gupta, “Telecentric confocal optics for aberration correction of acousto-optic tunable filters,” Appl. Opt. 43, 1255–1260 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Comput. Eletron. Agric. (1)

V. Alchanatis, L. Ridel, A. Hetzroni, and L. Yaroslavsky, “Weed detection in multi-spectral images of cotton fields,” Comput. Eletron. Agric. 47, 243–260 (2005).
[CrossRef]

Cosmic Res. (1)

O. I. Korablev, J. L. Bertaux, Y. K. Kalinnikov, A. A. Fedorova, V. I. Moroz, A. V. Kiselev, A. V. Stepanov, A. V. Grigoriev, V. S. Zhegulev, A. V. Rodin, E. Dimarellis, J. P. Dubois, A. Reberac, E. Van Ransbeeck, and B. Gondet, “Exploration of Mars in SPICAM-IR experiment onboard the Mars-Express spacecraft: 1. Acousto-optic spectrometer SPICAM-IR,” Cosmic Res. 44, 278–293 (2006).
[CrossRef]

Int. J. Remote Sens. (1)

Y. Inoue and J. Penuelas, “An AOTF-based hyperspectral imaging system for field use in ecophysiological and agricultural applications,” Int. J. Remote Sens. 22, 3883–3888 (2001).
[CrossRef]

J. Appl. Phys. (1)

Y. Ohmachi and N. Uchida, “Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals,” J. Appl. Phys. 41, 2307–2311 (1970).
[CrossRef]

J. Biomed. Opt. (1)

N. Gupta, “Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applicationsinstrument design point of view,” J. Biomed. Opt. 10, 051802 (2005).
[CrossRef]

J. Electron. Imaging (1)

J. Calpe-Maravilla, J. Vila-Francés, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amorós-López, L. Gómez-Chova, and E. Tajahuerce-Romera, “400- to 1000-nm imaging spectrometer based on acousto-optic tunable filters,” J. Electron. Imaging 15, 023001 (2006).
[CrossRef]

Opt. Eng. (3)

N. Gupta, “Acousto-optic tunable filter based visible- to near-infrared spectropolarimetric imager,” Opt. Eng. 41, 1033–1038 (2002).
[CrossRef]

I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 206824 (1981).
[CrossRef]

J. Vila-Francés, J. Calpe-Maravilla, L. Gómez-Chova, and J. Amorós-López, “Analysis of acousto-optic tunable filter performance for imaging applications,” Opt. Eng. 49, 113203 (2010).
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. B. Voloshinov, O. V. Mironov, and E. V. Trots, “Light fluxes at the output of tunable acoustooptic video filters,” Opt. Spectrosc. 71, 306–309 (1991).

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Proc. SPIE (1)

V. Balakshy, V. Voloshinov, V. Karasev, V. Molchanov, and V. Semenkov, “Compensation of thermal effects in acousto-optic deflector,” Proc. SPIE 2713, 164–171 (1996).
[CrossRef]

Real-Time Imaging (1)

J. Vila, J. Calpea, F. Pla, L. Gómez, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, J. Muñz, and A. Klaren, “SmartSpectra: applying multispectral imaging to industrial environments,” Real-Time Imaging 11, 85–98 (2005).
[CrossRef]

Rev. Sci. Instrum. (3)

J. Vila-Francés, J. Calpe-Maravilla, J. Muñoz-Mari, L. Gómez-Chova, J. Amorós-López, E. Ribes-Gómez, and V. Durán-Bosch, “Configurable-bandwidth imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 77, 073108 (2006).
[CrossRef]

S. Leavesley, Y. Jiang, V. Patsekin, B. Rajwa, and J. P. Robinson, “An excitation wavelength-scanning spectral imaging system for preclinical imaging,” Rev. Sci. Instrum. 79, 023707 (2008).
[CrossRef]

J. Romier, J. Selves, and J. Gastellu-Etchegorry, “Imaging spectrometer based on an acousto-optic tunable filter,” Rev. Sci. Instrum. 69, 2859–2867 (1998).
[CrossRef]

Other (4)

J. Calpe, F. Pla, J. Vila, J. Connell, J. Marchant, J. Calleja, M. Mulqueen, L. Gómez, and S. Vázquez, “SmartSpectra: smart multispectral camera for industrial applications,” presented at the Advanced Concepts for Intelligent Vision Systems (ACIVS 2003), Belgium, 2–5 September2003.

G. C. Holst, CCD Arrays, Cameras, and Displays (SPIE, 1998).

J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, 2001).

A. P. Goutzoulis, R. P. Dennis, and V. K. Sergei, Design and Fabrication of Acousto-Optic Devices (Dekker, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Principle and construction of an AOTF. One unpolarized white light beam is diffracted into two beams with orthogonal polarizations by the acoustic wave produced by the piezotransducer. Only one of them is used in many applications, and the other diffracted beam as well as the two transmitted beams is blocked.

Fig. 2.
Fig. 2.

Structure of the frame transfer CCD composed of two arrays for detection and storage.

Fig. 3.
Fig. 3.

Structures of the interline and the full frame CCDs. (a) For the interline CCD, the storage registers are interlined in the detection array. (b) For the full frame CCD, the entire array is for detection without storage area.

Fig. 4.
Fig. 4.

Illustration of the process of image smear for the frame transfer CCD, provided that only one pixel is illuminated. (a) The sensor just finishes exposure with valid electrons in one pixel. (b) One row is transferred and the original pixel collects some unwanted photons simultaneously. (c) Several rows are transferred inducing a stripe image.

Fig. 5.
Fig. 5.

Schematic of an AOTF imaging spectrometer. Two lenses placed at the two sides of the AOTF are used for imaging, and two crossed polarizers in combination with a beam stop are used for stray light elimination. The RF signal generator consisting of a frequency synthesis circuit, a power amplifier, and a control unit is for the stimulation of the AOTF and the synchronization of the camera.

Fig. 6.
Fig. 6.

Traditional synchronization between the RF signal and the frame transfer CCD camera. The frequency is switched on all the time. (a) The camera is in the parallel mode under tetr. One frequency span covers the time for the exposure and the image shift. (b) The camera is in the sequential mode under te<tr. One frequency span covers the time for the exposure, the image shift, and the readout.

Fig. 7.
Fig. 7.

Improved synchronization between the RF signal and the frame transfer CCD in the parallel mode. The frequency is switched on in the exposure and off in the image shift. Before each exposure, a small portion of time is left for acoustic wave stabilization.

Fig. 8.
Fig. 8.

Photograph of the AOTF spectral imaging experiment.

Fig. 9.
Fig. 9.

Test results of the RF signal generator: (a) traditional mode and (b) improved mode.

Fig. 10.
Fig. 10.

Test results of the RF signal generator combined with the camera: (a) traditional mode and (b) improved mode.

Fig. 11.
Fig. 11.

Images acquired with the traditional and improved synchronization schemes under the same RF signal frequencies. (a) Images captured in the traditional mode contain vertical stripes. (b) Images obtained in the improved mode eliminate the stripes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ=VaΔnfa(sin4θi+sin22θi)1/2,
η=sin2[πλcosθi(PaM2L2H)1/2],
ton=ts+te,
toff=tits.

Metrics