Abstract

We report a technique to increase the data rate of a free-space all-undersea laser communication link using polarization and wavelength modulation. Measurements were made at various background light levels to estimate the required power increase as a function of bits per pulse. Transmission measurements were made of laser light through a 2-m-long tube filled with a mixture of Maalox and water to simulate ocean-water conditions for several receiver field-of-view (FOV) angles. A degree of polarization greater than 98% was measured at FOVs up to 100 mrad at an attenuation of 14 extinction lengths.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.
  2. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008).
    [CrossRef]
  3. W. Cox, B. Hughes, and J. Muth, “A polarization shift-keying system for underwater optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2009), pp. 1–4.
  4. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt. 49, 3224–3230 (2010).
    [CrossRef]
  5. R. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), pp. 279–285.
  6. J. G. Proakis, “Probability of error for multiamplitude signals,” in Digital Communications, Section 4.2.7, 2nd ed. (McGraw-Hill, 1989), pp. 272–277.
  7. S. Karp and R. Gagliardi, “The design of a pulse-position modulated optical communication system,” IEEE Trans. Commun. Technol. COM-17, 670–676 (1969.
  8. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), pp. 109–140.
  9. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef]
  10. T. J. Petzold, “Volume scattering functions for selected ocean waters,” , Refs. 72–78 (Scripps Institution of Oceanography, San Diego, California, 1972), pp. 25–38.
  11. L. Mullen, B. Cochenour, W. Rabinovich, R. Mahon, and J. Muth, “Backscatter suppression for underwater modulating retroreflector links using polarization discrimination,” Appl. Opt. 48, 328–337 (2009).
    [CrossRef]

2010

2009

2008

1991

1969

S. Karp and R. Gagliardi, “The design of a pulse-position modulated optical communication system,” IEEE Trans. Commun. Technol. COM-17, 670–676 (1969.

Cochenour, B.

Cox, W.

W. Cox, B. Hughes, and J. Muth, “A polarization shift-keying system for underwater optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2009), pp. 1–4.

Farr, N.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Gagliardi, R.

S. Karp and R. Gagliardi, “The design of a pulse-position modulated optical communication system,” IEEE Trans. Commun. Technol. COM-17, 670–676 (1969.

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), pp. 279–285.

Gentili, B.

Hanson, F.

Hughes, B.

W. Cox, B. Hughes, and J. Muth, “A polarization shift-keying system for underwater optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2009), pp. 1–4.

Karp, S.

S. Karp and R. Gagliardi, “The design of a pulse-position modulated optical communication system,” IEEE Trans. Commun. Technol. COM-17, 670–676 (1969.

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), pp. 279–285.

Lasher, M.

Mahon, R.

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), pp. 109–140.

Morel, A.

Mullen, L.

Muth, J.

L. Mullen, B. Cochenour, W. Rabinovich, R. Mahon, and J. Muth, “Backscatter suppression for underwater modulating retroreflector links using polarization discrimination,” Appl. Opt. 48, 328–337 (2009).
[CrossRef]

W. Cox, B. Hughes, and J. Muth, “A polarization shift-keying system for underwater optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2009), pp. 1–4.

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” , Refs. 72–78 (Scripps Institution of Oceanography, San Diego, California, 1972), pp. 25–38.

Pontbriand, C.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Popenoe, H.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Preiseg, J.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Proakis, J. G.

J. G. Proakis, “Probability of error for multiamplitude signals,” in Digital Communications, Section 4.2.7, 2nd ed. (McGraw-Hill, 1989), pp. 272–277.

Rabinovich, W.

Radic, S.

Ware, J.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Appl. Opt.

IEEE Trans. Commun. Technol.

S. Karp and R. Gagliardi, “The design of a pulse-position modulated optical communication system,” IEEE Trans. Commun. Technol. COM-17, 670–676 (1969.

Other

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), pp. 109–140.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” , Refs. 72–78 (Scripps Institution of Oceanography, San Diego, California, 1972), pp. 25–38.

R. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), pp. 279–285.

J. G. Proakis, “Probability of error for multiamplitude signals,” in Digital Communications, Section 4.2.7, 2nd ed. (McGraw-Hill, 1989), pp. 272–277.

W. Cox, B. Hughes, and J. Muth, “A polarization shift-keying system for underwater optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2009), pp. 1–4.

C. Pontbriand, N. Farr, J. Ware, J. Preiseg, and H. Popenoe, “Diffuse high-bandwidth optical communications,” in Proceedings of IEEE OCEANS (IEEE, 2008), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Block diagram of a combination of 16 polarization states and wavelengths.

Fig. 2.
Fig. 2.

Polarization-modulation experimental layout is shown. Three nonpolarizing beam-splitter cubes (BSC) and a mirror split the beam into four paths, each with an acousto-optic modulator (AOM) with associated lens for focusing (Lenses 1–4) and collimating (Lenses 5–8). Three of the modulated beams pass through half-wave plates (HWP) to produce the four polarization states. Four mirrors direct the parallel beams to the vertical polarizer (V. Pol.) and PMT detector.

Fig. 3.
Fig. 3.

BER versus SNR at M=3 and 100 Hz.

Fig. 4.
Fig. 4.

BER versus SNR with 39.3×106 background photoelectrons at M=2, 3, and 4 at 100 Hz.

Fig. 5.
Fig. 5.

BER versus signal photoelectrons with 39.3×106 background photoelectrons at M=2, 3, and 4 at 100 Hz.

Fig. 6.
Fig. 6.

BER versus signal photoelectrons with 39.3×103 background photoelectrons at M=2, 3, and 4 at 100 kHz.

Fig. 7.
Fig. 7.

Polarization modulation (M=4) at 100 kHz with two background levels and one reference.

Fig. 8.
Fig. 8.

Water tube experimental layout.

Fig. 9.
Fig. 9.

Extinction length as a function of FOV is represented by data points at various concentrations of Maalox, and estimated extinction lengths based on ray-tracing software are given as solid lines.

Fig. 10.
Fig. 10.

Measured extinction length as a function of FOV is represented by data points with (left) no Maalox added and (right) a Maalox concentration of 12.27×105. Estimated extinction lengths based on ray-tracing software are given as solid lines.

Fig. 11.
Fig. 11.

DOP at 10 and 100 mrad FOV for various extinction lengths.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR=KS2/(KS+KN),
T(i)=3s[(i/M)0.5]+m,
EMF=(log2M)4(log2M1).
c=co+add1.00+bdd0.94,

Metrics