Abstract

We study numerically and demonstrate experimentally a novel type of singular optical beams formed by the phase imprinting of an optical vortex into the structure of the three-Airy beams. In contrast to a vortex-free product of three Airy beams, in this type of singular-Airy beam, the vortex in the beam axis causes a twist in the beam transverse intensity profile with propagation. Such a new type of singular beams appears especially attractive for applications in optical micromanipulation.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Structured Light and Its Applications, D. L. Andrews, ed. (Elsevier, 2008).
  2. N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012).
    [CrossRef]
  3. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
    [CrossRef]
  4. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
    [CrossRef]
  5. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
    [CrossRef]
  6. A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
    [CrossRef]
  7. D. G. Grier, “A revolution in optical manipulation,” Nat. Photonics 424, 810–816 (2003).
    [CrossRef]
  8. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [CrossRef]
  9. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
    [CrossRef]
  10. C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
    [CrossRef]
  11. V. G. Shvedov, Y. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
    [CrossRef]
  12. P. Zhang, D. Hernandez, D. Cannan, Y. Hu, S. Fardad, S. Huang, J. C. Chen, D. N. Christodoulides, and Z. Chen, “Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams,” Biomed. Opt. Express 3, 1891–1897 (2012).
    [CrossRef]
  13. E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004).
    [CrossRef]
  14. Y. Izdebskaya, V. Shvedov, and A. Volyar, “Symmetric array of off-axis singular beams: spiral beams and their critical points,” J. Opt. Soc. Am. A 25, 171–181 (2008).
    [CrossRef]
  15. M. A. Bandres and J. C. Gutierrez-Vega, “Airy–Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15, 16719–16728 (2007).
    [CrossRef]
  16. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
    [CrossRef]
  17. J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt. 48, 3170–3176 (2009).
    [CrossRef]
  18. S. Barwick, “Accelerating regular polygon beams,” Opt. Lett. 35, 4118–4120 (2010).
    [CrossRef]
  19. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [CrossRef]
  20. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
    [CrossRef]
  21. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  22. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
    [CrossRef]
  23. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
    [CrossRef]
  24. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
    [CrossRef]
  25. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
    [CrossRef]
  26. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
    [CrossRef]
  27. A. V. Novitsky and D. V. Novitsky, “Nonparaxial Airy beams: role of evanescent waves,” Opt. Lett. 34, 3430–3432 (2009).
    [CrossRef]
  28. P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
    [CrossRef]
  29. P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
    [CrossRef]
  30. M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013).
    [CrossRef]
  31. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
    [CrossRef]
  32. M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
    [CrossRef]
  33. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35, 4075–4077 (2010).
    [CrossRef]
  34. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation properties of an optical vortex carried by an Airy beam: experimental implementation,” Opt. Lett. 36, 1617–1619 (2011).
    [CrossRef]
  35. C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
    [CrossRef]
  36. K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
    [CrossRef]
  37. D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
    [CrossRef]
  38. R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
    [CrossRef]
  39. J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.
  40. E. Abramochkin and E. Razueva, “Product of three Airy beams,” Opt. Lett. 36, 3732–3734 (2011).
    [CrossRef]
  41. Y. Liang, Z. Ye, D. Song, C. Lou, X. Zhang, J. Xu, and Z. Chen, “Generation of linear and nonlinear propagation of three-Airy beams,” Opt. Express 21, 1615–1622 (2013).
    [CrossRef]
  42. J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21, 20544–20555 (2013).
    [CrossRef]
  43. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999).
    [CrossRef]
  44. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
    [CrossRef]

2014

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
[CrossRef]

2013

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
[CrossRef]

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

Y. Liang, Z. Ye, D. Song, C. Lou, X. Zhang, J. Xu, and Z. Chen, “Generation of linear and nonlinear propagation of three-Airy beams,” Opt. Express 21, 1615–1622 (2013).
[CrossRef]

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013).
[CrossRef]

J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21, 20544–20555 (2013).
[CrossRef]

2012

P. Zhang, D. Hernandez, D. Cannan, Y. Hu, S. Fardad, S. Huang, J. C. Chen, D. N. Christodoulides, and Z. Chen, “Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams,” Biomed. Opt. Express 3, 1891–1897 (2012).
[CrossRef]

N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012).
[CrossRef]

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

2011

2010

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35, 4075–4077 (2010).
[CrossRef]

S. Barwick, “Accelerating regular polygon beams,” Opt. Lett. 35, 4118–4120 (2010).
[CrossRef]

2009

J. A. Davis, M. J. Mitry, M. A. Bandres, I. Ruiz, K. P. McAuley, and D. M. Cottrell, “Generation of accelerating Airy and accelerating parabolic beams using phase-only patterns,” Appl. Opt. 48, 3170–3176 (2009).
[CrossRef]

A. V. Novitsky and D. V. Novitsky, “Nonparaxial Airy beams: role of evanescent waves,” Opt. Lett. 34, 3430–3432 (2009).
[CrossRef]

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

2008

2007

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

M. A. Bandres and J. C. Gutierrez-Vega, “Airy–Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15, 16719–16728 (2007).
[CrossRef]

2005

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[CrossRef]

2004

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nat. Photonics 424, 810–816 (2003).
[CrossRef]

2001

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

1999

1996

1979

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

1974

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Abramochkin, E.

Abramochkin, E. G.

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004).
[CrossRef]

Aleahmad, P.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

Alieva, T.

Alonso, M. A.

Alpmann, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Arie, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

Bandres, M. A.

Barwick, S.

Baumgartl, J.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Campos, J.

Cannan, D.

Castro, I.

Chen, C.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Chen, J. C.

Chen, R.-P.

R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
[CrossRef]

Chen, Z.

Cheng, K.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
[CrossRef]

Chew, K.-H.

R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
[CrossRef]

Chremmos, I.

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Christodoulides, D. N.

P. Zhang, D. Hernandez, D. Cannan, Y. Hu, S. Fardad, S. Huang, J. C. Chen, D. N. Christodoulides, and Z. Chen, “Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams,” Biomed. Opt. Express 3, 1891–1897 (2012).
[CrossRef]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36, 1842–1844 (2011).
[CrossRef]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Cižmár, T.

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

Cottrell, D. M.

Dai, H. T.

Davis, J. A.

Deng, D.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Dennis, M. R.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
[CrossRef]

Denz, C.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Desyatnikov, A. S.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

V. G. Shvedov, Y. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[CrossRef]

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[CrossRef]

Dholakia, K.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Efremidis, N.

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Efremidis, N. K.

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

Esseling, M.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Fardad, S.

Gahagan, K. T.

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

Gao, Y.

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Gover, A.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nat. Photonics 424, 810–816 (2003).
[CrossRef]

Gutierrez-Vega, J. C.

He, S.

R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
[CrossRef]

Hernandez, D.

Hu, Y.

Huang, S.

Izdebskaya, Y.

Izdebskaya, Y. V.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Kaminer, I.

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013).
[CrossRef]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

Kivshar, Yu. S.

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Krolikowski, W.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

V. G. Shvedov, Y. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[CrossRef]

Lereah, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

Li, H.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Li, T.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Liang, Y.

Lilach, Y.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

Litchinitser, N. M.

N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012).
[CrossRef]

Liu, J.

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Liu, Y.

Liu, Y. J.

Lou, C.

Lu, C.

Luo, D.

Mazilu, M.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

McAuley, K. P.

Mills, M. S.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Miri, M.-A.

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

Mitry, M. J.

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Morandotti, R.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

Moreno, I.

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Novitsky, A. V.

Novitsky, D. V.

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

O’Holleran, K.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
[CrossRef]

Padgett, M. J.

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
[CrossRef]

Papazoglou, D. G.

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Prakash, J.

Ramos-García, R.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

Razueva, E.

Rode, A. V.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

V. G. Shvedov, Y. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[CrossRef]

Rodrigo, J. A.

Rodríguez-Fajardo, V.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

Rosales-Guzmán, C.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

Rose, P.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Ruiz, I.

Segev, M.

M. A. Bandres, M. A. Alonso, I. Kaminer, and M. Segev, “Three-dimensional accelerating electromagnetic waves,” Opt. Express 21, 13917–13929 (2013).
[CrossRef]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

Shvedov, V.

Shvedov, V. G.

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

V. G. Shvedov, Y. Izdebskaya, A. V. Rode, A. S. Desyatnikov, W. Krolikowski, and Yu. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[CrossRef]

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Song, D.

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Sun, X. W.

Swartzlander, G. A.

Torner, L.

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[CrossRef]

Tzortzakis, S.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

Voloch-Bloch, N.

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

Volostnikov, V. G.

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004).
[CrossRef]

Volyar, A.

Wang, S.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Xiang, A.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
[CrossRef]

Xu, J.

Ye, Z.

Yin, X.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

Yzuel, M. J.

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Zhang, P.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

P. Zhang, D. Hernandez, D. Cannan, Y. Hu, S. Fardad, S. Huang, J. C. Chen, D. N. Christodoulides, and Z. Chen, “Trapping and rotating microparticles and bacteria with moiré-based optical propelling beams,” Biomed. Opt. Express 3, 1891–1897 (2012).
[CrossRef]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, “Plasmonic Airy beams with dynamically controlled trajectories,” Opt. Lett. 36, 3191–3193 (2011).
[CrossRef]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Zhang, X.

Zhang, Z.

Zhao, J.

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Zhao, X.

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Zhong, X.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
[CrossRef]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Am. J. Phys.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. A

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, Y. V. Izdebskaya, W. Krolikowski, and Y. S. Kivshar, “Optical vortex beams for trapping and transport of particles in air,” Appl. Phys. A 100, 327–331 (2010).
[CrossRef]

Appl. Phys. B

D. Deng, C. Chen, X. Zhao, and H. Li, “Propagation of an Airy vortex beam in uniaxial crystals,” Appl. Phys. B 110, 433–436 (2013).
[CrossRef]

Appl. Phys. Lett.

C. Alpmann, M. Esseling, P. Rose, and C. Denz, “Holographic optical bottle beams,” Appl. Phys. Lett. 100, 111101 (2012).
[CrossRef]

Biomed. Opt. Express

J. Opt.

C. Rosales-Guzmán, M. Mazilu, J. Baumgartl, V. Rodríguez-Fajardo, R. Ramos-García, and K. Dholakia, “Collision of propagating vortices embedded within Airy beams,” J. Opt. 15, 044001 (2013).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3, 395–398 (2009).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nat. Photonics 424, 810–816 (2003).
[CrossRef]

Nature

N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie, “Generation of electron Airy beams,” Nature 494, 331–335 (2013).
[CrossRef]

Opt. Express

Opt. Laser Technol.

K. Cheng, X. Zhong, and A. Xiang, “Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam,” Opt. Laser Technol. 57, 77–83 (2014).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, “Nonparaxial Mathieu and Weber accelerating beams,” Phys. Rev. Lett. 109, 193901 (2012).
[CrossRef]

P. Aleahmad, M.-A. Miri, M. S. Mills, I. Kaminer, M. Segev, and D. N. Christodoulides, “Fully vectorial accelerating diffraction-free Helmholtz beams,” Phys. Rev. Lett. 109, 203902 (2012).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Phys. Usp.

E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys. Usp. 47, 1177–1203 (2004).
[CrossRef]

Proc. R. Soc. London, Ser. A

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974).
[CrossRef]

Proc. SPIE

M. Mazilu, J. Baumgartl, T. Čižmár, and K. Dholakia, “Accelerating vortices in Airy beams,” Proc. SPIE 7430, 74300C (2009).
[CrossRef]

Prog. Opt.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001).
[CrossRef]

M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: optical vortices and polarization singularities,” Prog. Opt. 52, 293–363 (2009).
[CrossRef]

A. S. Desyatnikov, Yu. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005).
[CrossRef]

Sci. Rep.

R.-P. Chen, K.-H. Chew, and S. He, “Dynamic control of collapse in a vortex Airy beam,” Sci. Rep. 3, 1406 (2013).
[CrossRef]

Science

N. M. Litchinitser, “Structured light meets structured matter,” Science 337, 1054–1055 (2012).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Other

Structured Light and Its Applications, D. L. Andrews, ed. (Elsevier, 2008).

J. Zhao, P. Zhang, J. Liu, I. Chremmos, D. Deng, Y. Gao, N. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping, and guiding microparticles with self-accelerating vortex beams,” in CLEO, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM1M.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. λ/2, half-wavelength plate; L1 and L2, dual lens telescope; M1 and M2, mirrors; SLM, spatial light modulator; L3, Fourier lens; CCD, camera.

Fig. 2.
Fig. 2.

Propagation of a product of three Airy beams for c=32/3a3 with a3=4.82 at different propagation distances z: (top row) the experimental results, (middle row) the intensity distribution, and (bottom row) the corresponding phase distribution obtained numerically. The window size in the numerical frames are scaled by 1+z2, as introduced in [40]. Here and in figures below, the intensities in the experimental images (top rows) are scaled from zero (black) to a maximum value (green), the numerical intensities (middle rows) are similar from blue to red, and the phase profiles (bottom rows) are scaled from π (blue) to +π (red).

Fig. 3.
Fig. 3.

Same as in Fig. 2 but with the vortex imprinted as in Eq. (2).

Fig. 4.
Fig. 4.

Same as in Fig. 2 for a vortex-free three-Airy beam with c=32/3a3 and a3=5.52.

Fig. 5.
Fig. 5.

Same as in Fig. 4 but with a vortex imprinted as in Eq. (2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(r;b,c)=Ai(bx3y2+c)×Ai(bx3y2+c)×Ai(by+c),
Ψ0Ψ(kx,ky)=(kx+imky)·F(E(x,y;b,c))=(kx+imky)Ai(32/3c+2kx2+ky234/3b2)×exp(2i3kx2ky227b3ky),
2ik0zψ+xx2ψ+yy2ψ=0,
T(kx,ky)=exp(i|Ψ0|argΨ0max(|Ψ0|)+iKkx),

Metrics